Introduction to Complex Analysis

Revised Edition

H. A. PRIESTLEY

CLARENDON PRESS · OXFORD

Contents

Notation and terminology	
1. The complex plane	1
Complex numbers	1
Open and closed sets in the complex	plane 6
Limits and continuity	9
Exercises	11
2. Holomorphic functions and power se	eries 13
Holomorphic functions	13
Complex power series	18
Elementary functions	21
Exercises	26
3. Prelude to Cauchy's theorem	28
Paths	28
Integration along paths	31
Connectedness and simple connectedr	ness 39
Properties of paths and contours	43
Exercises	47
4. Cauchy's theorem	49
Cauchy's theorem, Level I	50
Cauchy's theorem, Level II	56
Logarithms, argument, and index	57
Cauchy's theorem revisited	61
Exercises	62
5. Consequences of Cauchy's theorem	64
Cauchy's formulae	65
Power series representation	69
Zeros of holomorphic functions	72
The Maximum-modulus theorem	75
Exercises	76

x	Contents

6.	Singularities and multifunctions	79
	Laurent's theorem	79
	Singularities	84
	Meromorphic functions	88
	Multifunctions	91
	Exercises	101
7.	Cauchy's residue theorem	104
	Cauchy's residue theorem	104
	Counting zeros and poles	107
	Calculation of residues	109
	Estimation of integrals	112
	Exercises	116
8.	Applications of contour integration	118
	Improper and principal-value integrals	118
	Integrals involving functions with a finite number of poles	120
	Integrals involving functions with infinitely many poles	125
	Deductions from known integrals	126
	Integrals involving multifunctions	128
	Evaluation of definite integrals: summary	130
	Summation of series	131
	Exercises	133
9.	Fourier and Laplace transforms	135
	The Laplace transform: basic properties and evaluation	136
	The inversion of Laplace transforms	138
	The Fourier transform	145
	Applications to differential equations, etc.	150
	Appendix: proofs of the Inversion and Convolution theorems	157
	Convolutions	159
	Exercises	161
10.	Conformal mapping and harmonic functions	164
	Circles and lines revisited	165
	Conformal mapping	168
	Möbius transformations	170
	Other mappings: powers, exponentials, and the Joukowski transformation	174

Contents xi	
176	
181	
183	
191	
193	
207	
209	
211	