Lectures on the Mordell-Weil Theorem

Translated and edited by Martin Brown from notes by Michel Waldschmidt

3rd edition

CONTENTS

1.	Summary.	1
	1.1. Heights.	3
	 The Mordell-Weil theorem and Mordell's conjecture. 	3
	 Integral points on algebraic curves. Siegel's theorem. 	4
	1.4. Baker's method.	5
	 Hilbert's irreducibility theorem. Sieves. 	5
2.	Heights.	7
	2.1. The product formula.	7
	2.2. Heights on $P_m(K)$.	10
	2.3. Properties of heights.	13
	2.4. Northcott's finiteness theorem.	16
	Quantitative form of Northcott's theorem.	17
	 Height associated to a morphism φ : X → P_n. 	19
	2.7. The group Pic(X).	20
	2.8. Heights and line bundles.	22
	 h_c = O(1) ⇔ c is of finite order (number fields). 	24
	2.10. Positivity of the height.	24
	2.11. Divisors algebraically equivalent to zero.	25
	2.12. Example-exercise: projective plane blown up at a point.	26
3.	Normalised heights.	29
	3.1. Néron-Tate normalisation.	29
	3.2. Abelian varieties.	31
	 Quadraticity of h_e on abelian varieties. 	35
	 Quality and Poincaré divisors. 	36
	3.5. Example: elliptic curves.	39
	3.6. Exercises on elliptic curves.	40
	 Applications to properties of heights. 	41
	3.8. Non-degeneracy.	42
	 Structure of A(K): a preliminary result. 	43
	 Back to §2.11 (c algebraically equivalent to zero). 	44
	3.11. Back to §2.9 (torsion c).	46

VIII	Contents

4. TI	ne Mordell-Weil theorem.	49
	4.1. Hermite's finiteness theorem.	49
- 5	4.2. The Chevalley-Weil theorem.	50
	4.3. The Mordell-Weil theorem.	51
	4.4. The classical descent.	53
	4.5. The number of points of bounded height on an abelian variety.	53
	 Explicit form of the weak Mordell-Weil theorem. 	55
5. N	fordell's conjecture.	58
	5.1. Chabauty's theorem.	58
- 1	5.2. The Manin-Demjanenko theorem.	62
4	 First application: Fermat quartics (Demjanenko). 	66
- 9	5.4. Second application: modular curves $X_0(p^n)$ (Manin).	67
	5.5. The generalised Mordell conjecture.	73
	5.6. Mumford's theorem; preliminaries.	74
	 Application to heights: Mumford's inequality. 	77
6. L	ocal calculation of normalised heights.	81
	6.1. Bounded sets.	81
	6.2. Local heights.	83
	6.3. Néron's theorem.	87
- 9	 Relation with global heights. 	89
	6.5. Elliptic curves.	90
7. Si	egel's method.	94
	7.1. Quasi-integral sets.	94
	7.2. Approximation of real numbers.	95
	7.3. The approximation theorem on abelian varieties.	98
	 7.4. Application to curves of genus ≥ 1. 	101
	7.5. Proof of Siegel's theorem.	102
	7.6. Application to $P(f(n))$.	105
	7.7. Effectivity.	106
8. I	Baker's method.	108
	8.1. Reduction theorems.	108
	8.2. Lower bounds for $\Sigma \beta_i \log \alpha_i$.	110
	8.3. Application to $P_1 - \{0, 1, \infty\}$.	112
	8.4. Applications to other curves.	114
	8.5. Applications to elliptic curves with good reduction outside	118
	a given finite set of places.	

ontents	IX
AND AND AND ADDRESS OF THE ADDRESS O	The second second

9. Hilbert's irreducibility theorem.	121
9.1. Thin sets.	121
9.2. Specialisation of Galois groups.	122
9.3. Examples of degrees 2,3,4,5.	123
9.4. Further properties of thin sets.	127
9.5. Hilbertian fields.	129
9.6. The irreducibility theorem: elementary proof.	130
9.7. Thin sets in P ₁ : upper bounds.	132
10. Construction of Galois extensions.	137
10.1. The method.	137
10.2. Extensions with Galois group S_n .	138
10.3. Extensions with Galois group A _n .	144
 Further examples of Galois groups: use of elliptic curves. 	145
10.5. Noether's method.	147
10.6. Infinite Galois extensions.	147
10.7. Recent results.	149
 Construction of elliptic curves of large rank. 	152
 Néron's specialisation theorem. 	152
 Elliptic curves of rank ≥ 9 over Q. 	154
 Elliptic curves of rank ≥ 10 over Q. 	158
11.4. Elliptic curves of rank ≥ 11 over Q.	161
12. The large sieve.	163
Statement of the main theorem.	163
12.2. A lemma on finite groups.	164
12.3. The Davenport-Halberstam theorem.	166
Proof of the Davenport-Halberstam theorem.	167
12.5. End of the proof of the main theorem.	172
Applications of the large sieve to thin sets.	177
 Statements of results. 	177
13.2. Proof of theorem 1.	179
13.3. Proof of theorem 5.	183
13.4. Proof of theorem 3 from theorem 1.	180

210

Index.