An Introduction to **Combinatorics**

Alan Slomson

School of Mathematics University of Leeds

CHAPMAN & HALL/CRC

Boca Raton London New York Washington, D.C.

Contents

Intro	duction	Xi	
Why	combinatorics?	xi xii xiii xiv	
Cour	nting problems		
Wha	t you need to know		
Are	you sitting comfortably?		
Ackr	nowledgements	xv	
1 Pe	rmutations and combinations	1	
1.1	Introduction	1	
1.2	Permutations	1	
1.3	Combinations	5	
1.4	Applications to probability problems	11	
2 Th	e inclusion-exclusion principle	19	
2.1	Double counting	19	
2.2	2 Derangements	25	
3 Pa	rtitions	29	
3.1	What are partitions?	29	
	Dot diagrams	32	
3.3	What is a formula?	36	
3.4	A lower bound for $p_k(n)$	40	
4 Sti	rling's approximation	43	
	Asymptotic functions	43	
	Stirling's formula	47	
	A note on James Stirling	54	
4 4	A lower bound for n(n)	55	

viii Contents

5	Parti	itions and generating functions	58
	5.1	Introduction	58
	5.2	Generating functions	62
	5.3	Applications to partition numbers	66
	5.4	Euler's identity	70
	5.5	The Hardy-Ramanujan formula	73
	5.6	The story of Hardy and Ramanujan	76
6	Generating functions and recurrence relations		80
		What is a recurrence relation?	80
		The use of generating functions	82
		Homogeneous linear recurrence relations	86
		Inhomogenous linear recurrence relations	93
		Some non-linear recurrence relations	100
	6.6	Partial fractions	104
7		nutations and groups	109
		Permutations	109
	7.2	Groups of permutations	113
		Symmetry groups	120
		Subgroups and Lagrange's Theorem	123
	7.5	Orders of group elements	129
	7.6	The orders of permutations	131
8	Group actions		136
		Colourings	136
	8.2	The axioms for group actions	139
	-	Orbits	142
	8.4	Stabilizers	144
9	Graphs		150
		What are graphs?	150
	9.2	Labelled graphs	154
10		nting patterns	158
		Burnside's Theorem	158
	10.2	Applications of Burnside's Theorem	160
11		a's Theorem	167
		Colourings and group actions	167
		Pattern inventories	170
		The cycle index of a group	173
	11.4	Pólya's Theorem: statement and examples	177
	11.5	Pólya's Theorem: the proof	181

		Contents ix
11.6	Counting simple graphs	185
11.7	Conclusion	193
Supplementary exercises		194
Solution	g	203
Suggestions for further reading		265
List of special symbols		267
Index		269