Set Theory and the Continuum Problem

Raymond M. Smullyan

Indiana University

and

Melvin Fitting

City University of New York

CONTENTS

I AXIOMATIC SET THEORY

3

	General background	3
61	What is infinity?	4
\$2	Countable or uncountable?	6
43	A non-denumerable set	7
54	Larger and smaller	8
45	The continuum problem	9
16	Significance of the results	10
17	Frege set theory	
48	Russell's paradox	11
19	Zermelo set theory	12
110	Sets and classes	13
2	Some basics of class-set theory	14 14
51	Extensionality and separation	16
12	Transitivity and supercompleteness	17
13	Axiom of the empty set	18
64	The pairing axiom	20
45	The union axiom	20
96	The power axiom	22
\$7	Cartesian products	23
88	Relations	
59	Functions	23 24
510	Some useful facts about transitivity	25
511	Basic universes	25
3	The natural numbers	27
51	Preliminaries	27
82	Definition of the natural numbers	29
63	Derivation of the Peano postulates and other results	31
64	A double induction principle and its applications	32
85	Applications to natural numbers	37
86	Finite sets	39
87	Denumerable classes	39
88	Definition by finite recursion	40
69	Supplement—optional	41

CONTENTS

x

4	Superinduction, well ordering and choice	47
51	Introduction to well ordering	43
82	Superinduction and double superinduction	43
53	The well ordering of g-towers	48
54	Well ordering and choice	51
85		52
\$6	Another approach to maximal principles	55
67	Cowen's theorem	58
98	Another characterization of g-sets	60 62
5	Ordinal numbers	64
61	Ordinal numbers	64
42	Ordinals and transitivity	67
§ 3	Some ordinals	69
6	Order isomorphism and transfinite recursion	70
\$1	A few preliminaries	70
\$2	Isomorphisms of well orderings	71
\$3	The axiom of substitution	73
§4	The counting theorem	74
85	Transfinite recursion theorems	74
86	Ordinal arithmetic	78
7	Rank	81
ğl	The notion of rank	81
§2	Ordinal hierarchies	82
83	Applications to the R_{α} 's	83
§4	Zermelo universes	85
8	Foundation, ∈-induction, and rank	88
\$1	The notion of well-foundedness	88
§2	Descending ∈-chains	89
§3	e-Induction and rank	90
§4	Axiom E and Von Neumann's principle	91
§5	Some other characterizations of ordinals	93
§6	More on the axiom of substitution	94
9	Cardinals	96
§ 1	Some simple facts	96
52	The Bernstein-Schröder theorem	97
53	Denumerable sets	99
\$4	Infinite sets and choice functions	100
\$5	Hartog's theorem	101
§6	A fundamental theorem	102
57	Preliminaries	104
88	Cardinal arithmetic	106

CONTENTS xi

gų.	Sierpiński's theorem	109
	II CONSISTENCY OF THE CONTINUUM HYPOTHE	SIS
10	Mostowski-Shepherdson mappings	115
11	Relational systems	115
52	Generalized induction and \(\Gamma\)-rank	117
13	Generalized transfinite recursion	
14	Mostowski-Shepherdson maps	122
15	More on Mostowski-Shepherdson mappings	123
16	Isomorphisms, Mostowski-Shepherdson maps, and well order-	
510	ings	124
11	Reflection principles	128
(0)	Preliminaries	128
11	The Tarski-Vaught theorem	131
12	We add extensionality considerations	133
13	The class version of the Tarski-Vaught theorems	134
54	Mostowski, Shepherdson, Tarski, and Vaught	137
15	The Montague-Levy reflection theorem	137
12	Constructible sets	141
(()	More on first-order definability	141
11	The class L of constructible sets	142
12	Absoluteness	143
13	Constructible classes	148
13	L is a well founded first-order universe	153
11	First-order universes	153
12	Some preliminary theorems about first-order universes	156
13	More on first-order universes	157
14	Another result	160
14	Constructibility is absolute over L	162
1	Σ-formulas and upward absoluteness	162
12	More on Σ definability	164
13	The relation $y = \mathcal{F}(x)$	166
н	Constructibility is absolute over L	171
15	Further results	172
66	A proof that L can be well ordered	173
15	Constructibility and the continuum hypothesis	176
(0)	What we will do	176
11	The key result	177
12	Gödel's isomorphism theorem (optional)	179

xii CONTENTS

83	Some consequences of Theorem G	181
84	Metamathematical consequences of Theorem G	181
85	Relative consistency of the axiom of choice	183
§6	Relative consistency of GCH and AC in class-set theory	183
	III FORCING AND INDEPENDENCE RESULTS	
16	Forcing, the very idea	189
81	What is forcing?	189
§2	What is modal logic?	191
83	What is S4 and why do we care?	195
84	A classical embedding	196
§5	The basic idea	202
17	The construction of S4 models for ZF	203
§1	What are the models?	203
§2	About equality	208
§3	The well founded sets are present	212
§4	Four more axioms	214
§5	The definability of forcing	218
§6	The substitution axiom schema	220
§7	The axiom of choice	222
§8	Where we stand now	225
18	The axiom of constructibility is independent	226
§1	Introduction	226
§2	Ordinals are well behaved	226
§3	Constructible sets are well behaved too	228
§4	A real S4 model, at last	229
§5	Cardinals are sometimes well behaved	230
§ 6	The status of the generalized continuum hypothesis	233
19	Independence of the continuum hypothesis	235
51	Power politics	235
§2	The model	235
§3	Cardinals stay cardinals	236
§4	CH is independent	238
§5	Cleaning it up	239
§6	Wrapping it up	241
20	Independence of the axiom of choice	243
§1	A little history	243
§2	Automorphism groups	243
§3	Automorphisms preserve truth	246
§4	Model and submodel	248

CONTENTS		Alli
	Verifying the axioms	249
*	AC is independent	254
fi.	AC is independent	1000
21	Constructing classical models	259
7.5	On countable models	259
41 42	Cohen's way	260
	Dense sets, filters, and generic sets	261
*		263
14	When generic sets exist	264
15	Generic extensions	267
16	The truth lemma	269
17	Conclusion	
**	Forcing background	271
22		271
11	Introduction	272
12	Cohen's version(s)	273
13	Boolean valued models	273
9.4	Unramified forcing	274
15	Extensions	
Section 1		27
Re	ferences	
Subject index		28

Notation index

287