ORDINARY DIFFERENTIAL EQUATIONS

An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences

Morris Tenenbaum

Cornell University

Harry Pollard

Purdue University

Contents

PREPACE FOR THE TRACEER	XY
PREPACE FOR THE STUDENT	xvii
1. BASIC CONCEPTS	1
Lesson 1. How Differential Equations Originate.	1
 The Meaning of the Terms Set and Function. Implicit Functions. Elementary Functions. 	5
A. The Meaning of the Term Set. 5 B. The Meaning of the Term Function of One Independent Variable. 6 C. Function of Two Inde- pendent Variables. 11 D. Implicit Function. 14 E. The Elemen- tary Functions, 17	
Lesson 3. The Differential Equation.	20
A. Definition of an Ordinary Differential Equation. Order of a Differential Equation. 20 B. Solution of a Differential Equation. Explicit Solution. 21 C. Implicit Solution of a Differential Equation. 24	
Lesson 4. The General Solution of a Differential Equation.	28
A. Multiplicity of Solutions of a Differential Equation. 28 B. Method of Finding a Differential Equation if Its n-Parameter Family of Solutions Is Known. 31 C. General Solution. Particular Solution. Initial Conditions. 33	
Lesson 5. Direction Field.	38
A. Construction of a Direction Field. The Isochines of a Direction Field. 38 B. The Ordinary and Singular Points of the First Order Equation (5.11). 47	
2. SPECIAL TYPES OF DIFFERENTIAL EQUATIONS OF THE FIRST ORDER	46
Lesson 6. Meaning of the Differential of a Function. Separable Differential Equations.	47
A. Differential of a Function of One Independent Variable. 47 B. Differential of a Function of Two Independent Variables. 50 C. Differential Equations with Separable Variables. 51	

Lesson 7. First Order Differential Equation with	12
Homogeneous Coefficients. A. Definition of a Homogeneous Function, $\delta 7$ B. Solution of a Differential Equation in Which the Coefficients of dx and dy Are Each Homogeneous Functions of the Same Order, $\delta 8$	57
Lesson 8. Differential Equations with Linear Coefficients.	62
A. A Review of Some Plane Analytic Geometry, 62 B. Solution of a Differential Equation in Which the Coefficients of dx and dy are Linear, Nonhomogeneous, and When Equated to Zero Represent Nonparallel Lines. 63 C. A Second Method of Solving the Differential Equation (8.2) with Nonhomogeneous Coefficients. 66 D. Solution of a Differential Equation in Which the Coefficients of dx and dy Define Parallel or Coincident Lines. 67	2077
Lesson 9. Exact Differential Equations.	70
A. Definition of an Exact Differential and of an Exact Differential Equation, 72 B. Necessary and Sufficient Condition for Exactness and Method of Solving an Exact Differential Equation. 73	
Lesson 10. Recognizable Exact Differential Equations. Integrating Factors.	80
A. Recognizable Exact Differential Equations. 80 B. Integrating Factors. 88 C. Finding an Integrating Factor. 84	
Lesson 11. The Linear Differential Equation of the First Order. Bernoulli Equation.	91
 A. Definition of a Linear Differential Equation of the First Order, 91 B. Method of Solution of a Linear Differential Equation of the First Order, 92 C. Determination of the Integrating Factor eff P(x)dx, 94 D. Bernoulli Equation, 95 	
Lesson 12. Miscellaneous Methods of Solving a First Order Differential Equation.	99
A. Equations Permitting a Choice of Method. 99 B. Solution by Substitution and Other Means. 101	
I, PROBLEMS LEADING TO DIFFERENTIAL EQUATIONS OF THE FIRST ORDER	107
Lesson 13. Geometric Problems.	107
Lesson 14. Trajectories.	115
A. Isogonal Trajectories. 115 B. Orthogonal Trajectories. 117 C. Orthogonal Trajectory Formula in Polar Coordinates. 118	

Lesson 15.	Dilution and Accretion Problems. Interest Prob- lems. Temperature Problems. Decomposition and Growth Problems. Second Order Processes.	122
C. Temper	n and Accretion Problems, 122 B. Interest Problems, 126 rature Problems, 129 D. Decomposition and Growth 131 E. Second Order Processes, 134	-
Lesson 16,	Motion of a Particle Along a Straight Line— Vertical, Horizontal, Inclined.	138
A. Vertica Motion. 10	d Motion. 139 B. Horizontal Motion. 180 C. Inclined	
Lesson 17.	Pursuit Curves, Relative Pursuit Curves.	168
A. Pursuit	Curves. 168 B. Relative Pursuit Curve. 177	
Lesson 17M	I. Miscellaneous Types of Problems Leading to Equations of the First Order	183
Electric Ci sure—Atm Cylinder.	f Water Through an Orifice. 183 B. First Order Linear reuit. 184 C. Stendy State Flow of Heat. 188 D. Pres- ospheric and Oceanic. 186 E. Rope or Chain Around a 188 F. Motion of a Complex System. 189 G. Variable ket Motion. 191 H. Rotation of the Liquid in a Cylin-	
	DIFFERENTIAL EQUATIONS OF ORDER THAN ONE	196
Lesson 18.	Complex Numbers and Complex Functions.	197
	ex Numbers. 197 B. Algebra of Complex Numbers. 200 ential, Trigonometric, and Hyperbolic Functions of Complex 201	
Lesson 19.	Linear Independence of Functions. The Linear Differential Equation of Order n .	205
	Independence of Functions. 205 B. The Linear Differ- ation of Order vs. 207	
Lesson 20.	Solution of the Homogeneous Linear Differential Equation of Order n with Constant Coefficients.	211
Equation (Form of Its Solutions. 211 B. Roots of the Characteristic 20.14) Real and Distinct. 213 C. Roots of Characteristic 20.14) Real but Some Multiple. 214 D. Some or All Roots resteristic Equation (20.14) Imaginary. 212	

Lesson 21.	Solution of the Nonhomogeneous Linear Differential Equation of Order n with Constant Coefficients.	221
	n by the Method of Undetermined Coefficients. 221 B. So- he Use of Complex Variables. 230	
Lesson 22.		233
A. Introdu Parameters	ectory Remarks. 233 B. The Method of Variation of a 233	
Lesson 23.	Solution of the Linear Differential Equation with Nonconstant Coefficients. Reduction of Order Method.	241
	ectory Remarks. 241 B. Solution of the Linear Differential with Nonconstant Coefficients by the Reduction of Order 42	
5. OPERATOR	RS AND LAPLACE TRANSFORMS	250
Lesson 24.	Differential and Polynomial Operators.	251
tors. 851 C. Expone lution of a	ion of an Operator. Linear Property of Polynomial Opera- B. Algebraic Properties of Polynomial Operators. 255 ential Shift Theorem for Polynomial Operators. 260 D. So- Linear Differential Equation with Constant Coefficients by Polynomial Operators. 262	
Lesson 25.	Inverse Operators.	268
	ig of an Inverse Operator. 269 B. Solution of (25.1) by inverse Operators. 272	
Lesson 26.	Solution of a Linear Differential Equation by Means of the Partial Fraction Expansion of Inverse	
	Operators.	283
Solving a l of Inverse	Fraction Expansion Theorem. 283 B. First Method of inear Equation by Menns of the Partial Fraction Expansion Operators. 288 C. A Second Method of Solving a Linear by Means of the Partial Fraction Expansion of Inverse 290	
Lesson 27.	The Laplace Transform. Gamma Function.	292
erties of the tion with (D. Constr	er Integral. Definition of a Laplace Transform. 298 B. Prop- ne Laplace Transform. 295 C. Solution of a Linear Equa- constant Coefficients by Means of a Laplace Transform. 296 untion of a Table of Laplace Transforms. 308 E. The unction. 306	

6. PROBLEM	S LEADING TO LINEAR DIFFERENTIAL	
	S OF ORDER TWO	31
		1
Lesson 28.	Undamped Motion.	31
nitions in C ples of Par	ndamped Motion. (Simple Harmonic Motion.) 313 B. Defi- Connection with Simple Harmonic Motion. 317 C. Exam- ticles Executing Simple Harmonic Motion. Harmonic Oscil- D. Forced Undamped Motion. 338	
Lesson 29.	Damped Motion.	34
	amped Motion. (Damped Harmonic Motion.) 347 B. Forced th Damping. 359	
Lesson 30.	Electric Circuits. Analog Computation.	36
A. Simple	Electric Circuit. 369 B. Analog Computation. 375	
Lesson 30M	. Miscellaneous Types of Problems Leading to Linear Equations of the Second Order	38
	ns Involving a Centrifugal Force. 380 B. Rolling Bodies. Twisting Bodies. 383 D. Bending of Beams. 383	
. SYSTEMS	OF DIFFERENTIAL EQUATIONS.	
	ATION OF FIRST ORDER SYSTEMS	39
Lesson 31.	Solution of a System of Differential Equations.	39
B. Definiti C. Definiti tions. 39θ stant Coeff E. An Eq f ₁ (D)g ₂ (D) Equations.	ig of a Solution of a System of Differential Equations. 384 ion and Solution of a System of First Order Equations. 384 ion and Solution of a System of Linear Pirst Order Equation D. Solution of a System of Linear Equations with Conficients by the Use of Operators. Nondegenerate Case. 388 uivalent Triangular System. 405 F. Degenerate Case. 418 I. Solution of a System of Linear Differential Equations and Constant Coefficients by Means of Laplace Transforms. 418	
Lesson 32.	Linearization of First Order Systems.	42
SPECIAL T	S GIVING RISE TO SYSTEMS OF EQUATIONS. TYPES OF SECOND ORDER LINEAR AND NON- DUATIONS SOLVABLE BY REDUCING TO SYSTEMS	44
Lesson 33.	Mechanical, Biological, Electrical Problems Giving Rise to Systems of Equations.	44
A. A Meel	hanical Problem—Coupled Springs. 440 B. A Biological	22

* CONTENTS

10.34-01.4101.111		
Lesson 34.	Plane Motions Giving Rise to Systems of Equations.	459
Plane Mot Properties D. Definit vation of I in Motion to Its Dist Motion Su portional t G. Planets	tion of Velocity and Acceleration Formulas. 459 B. The ion of a Projectile. 468 C. Definition of a Central Force. of the Motion of a Particle Subject to a Central Force. 470 ions of Force Field, Potential, Conservative Field. Conservative Field. 473 E. Path of a Particle Subject to a Central Force Whose Magnitude Is Proportional ance from a Fixed Point O. 476 F. Path of a Particle in bject to a Central Force Whose Magnitude Is Inversely Proto the Square of Its Distance from a Fixed Point O. 481 ary Motion. 491 H. Kepler's (1571–1630) Laws of Planen. Proof of Newton's Inverse Square Law. 498	
Lesson 35.	Special Types of Second Order Linear and Nonlinear Differential Equations Solvable by Reduction to a System of Two First Order Equations.	500
Which y's tion of a S Dependent	n of a Second Order Nonlinear Differential Equation in and the Independent Variable x Are Absent. 500 B. Solu- second Order Nonlinear Differential Equation in Which the Variable y Is Absent. 502 C. Solution of a Second Order Equation in Which the Independent Variable x Is Absent. 503	
Lesson 36.	Problems Giving Rise to Special Types of Second Order Nonlinear Equations.	506
lem. 521	sepension Cable. 506 B. A Special Central Force Prob- C. A Pursuit Problem Leading to a Second Order Nonlinear I Equation. 535 D. Geometric Problems. 528	
, SERIES M	ETHODS	531
Lesson 37.	Power Series Solutions of Linear Differential Equations.	531
	of Taylor Series and Related Matters. 531 B. Solution Differential Equations by Series Methods. 537	
Lesson 38.	Series Solution of $y' = f(x,y)$.	548
Lesson 39.	Series Solution of a Nonlinear Differential Equation of Order Greater Than One and of a System of First Order Differential Equations.	555
B. Series !	colution of a System of First Order Differential Equations. 555 Solution of a System of Linear First Order Equations. 559 Solution of a Nonlinear Differential Equation of Order Greater 562	

Lesson 40. Ordinary Points and Singularities of a Linear Differential Equation. Method of Probenius.	570
A. Ordinary Points and Singularities of a Linear Differential Equation. 370 B. Solution of a Homogeneous Linear Differential Equation About a Regular Singularity. Method of Frobenius. 572	
Lesson 41. The Legendre Differential Equation. Legendre Functions. Legendre Polynomials $P_k(x)$. Properties of Legendre Polynomials $P_k(x)$.	
A. The Legendre Differential Equation, 591 B. Comments on the Solution (41.18) of the Legendre Equation (41.1). Legendre Functions. Legendre Polynomials $P_{\Lambda}(x)$, 596 C. Properties of Legendre Polynomials $P_{\Lambda}(x)$, 598	
Lesson 42. The Bessel Differential Equation. Bessel Function of the First Kind $J_{\lambda}(x)$. Differential Equations Leading to a Bessel Equation. Properties of $J_{\lambda}(x)$.	
A. The Bessel Differential Equation. 609 B. Bessel Functions of the First Kind $J_{\delta}(x)$. 611 C. Differential Equations Which Lead to a Bessel Equation. 615 D. Properties of Bessel Functions of the First Kind $J_{\delta}(x)$. 619	
Lesson 43. The Laguerre Differential Equation. Laguerre Polynomials $L_k(z)$. Properties of $L_k(z)$.	624
A. The Laguerre Differential Equation and Its Solution, 624 B. The Laguerre Polynomial $L_1(x)$, 625 C. Some Properties of Laguerre Polynomials $L_2(x)$, 627	
10. NUMERICAL METHODS	631
Lesson 44. Starting Method. Polygonal Approximation.	632
Lesson 45. An Improvement of the Polygonal Starting Method.	641
Lesson 46. Starting Method-Taylor Series.	645
A. Numerical Solution of y' = f(x,y) by Direct Substitution in a Taylor Series. 646	
Lesson 47. Starting Method—Runge-Kutta Formulas.	653
Lesson 48. Finite Differences. Interpolation.	659
A. Finite Differences, 659 B. Polynomial Interpolation, 661	

	Lesson 49.	Newton's Interpolation Formulas.	663
	(Backware	n's (Forward) Interpolation Formula. 683 B. Newton's i) Interpolation Formula. 688 C. The Error in Polyno- polation. 670	
	Lesson 50.	lem:lemma	672
	Lesson 51.	Milne's Method of Finding an Approximate Numerical Solution of $y' = f(x,y)$.	684
	Lesson 52.	General Comments. Selecting h . Reducing h . Summary and an Example.	690
		ent on Errors. 690 B. Choosing the Size of h . 691 C. Re- d Increasing h . 692 D. Summary and an Illustrative Exam-	
	Lesson 53.	Numerical Methods Applied to a System of Two First Order Equations.	702
	Lesson 54.	Numerical Solution of a Second Order Differential Equation.	707
	Lesson 55.	Perturbation Method. First Order Equation.	713
	Lesson 56.	Perturbation Method. Second Order Equation.	715
11.		E AND UNIQUENESS THEOREM FOR THE FIRST IFFERENTIAL EQUATION $y' = f(x,y)$. PICARD'S ENVELOPES. CLAIRAUT EQUATION,	719
	Lesson 57.	Picard's Method of Successive Approximations.	720
	Lesson 58.	An Existence and Uniqueness Theorem for the First Order Differential Equation $y' = f(x,y)$ Satisfying $y(x_0) = y_0$.	728
	Definition Theorems	repeace and Uniform Convergence of a Sequence of Functions. of a Continuous Function, 728 B. Lipschitz Condition, from Analysis, 731 C. Proof of the Existence and Unique- em for the First Order Differential Equation $y' = f(x,y)$, 733	
	Lesson 59.	The Ordinary and Singular Points of a First Order Differential Equation $y' = f(x,y)$.	744

	CONTENTS	xii
Lesson 60.	Envelopes.	747
	pes of a Family of Curves. 748 B. Envelopes of a 1-Paramy of Solutions. 784	
Lesson 61.	The Clairaut Equation.	751
OF FIRST LINEAR A	E AND UNIQUENESS THEOREMS FOR A SYSTEM ORDER DIFFERENTIAL EQUATIONS AND FOR ND NONLINEAR DIFFERENTIAL EQUATIONS OF REATER THAN ONE. WRONSKIANS.	763
Lesson 62.	An Existence and Uniqueness Theorem for a System of n First Order Differential Equations and for a Nonlinear Differential Equation of Order Greater Than One.	763
Order Diff orem for a	xistence and Uniqueness Theorem for a System of n First erential Equations. 763 B. Existence and Uniqueness The- Nonlinear Differential Equation of Order n. 763 C. Exist- Uniqueness Theorem for a System of n Linear First Order 768	
Lesson 63.	Determinants. Wronskians.	770
A. A Brie B. Wrons	f Introduction to the Theory of Determinants. 770 kians. 774	
Lesson 64.	Theorems About Wronskians and the Linear	

Independence of a Set of Solutions of a Homogeneous Linear Differential Equation.

Differential Equation of Order n.

Existence and Uniqueness Theorem for the Linear

12.

Lesson 65.

Bibliography

Index

778

783

791

793