

J. E. Dennis, Jr.

Rice University Houston, Texas

Robert B. Schnabel

University of Colorado Boulder, Colorado

Contents

PREFACE TO THE CLASSICS EDITION xi PREFACE xiii

||1|| INTRODUCTION 2

- 1.1 Problems to be considered 2
- 1.2 Characteristics of "real-world" problems 5
- 1.3 Finite-precision arithmetic and measurement of error 10
- 1.4 Exercises 13

||2|| NONLINEAR PROBLEMS IN ONE VARIABLE 15

- 2.1 What is not possible 15
- 2.2 Newton's method for solving one equation in one unknown 16
- 2.3 Convergence of sequences of real numbers 19
- 2.4 Convergence of Newton's method 21
- 2.5 Globally convergent methods for solving one equation in one unknown 24
- 2.6 Methods when derivatives are unavailable 27
- 2.7 Minimization of a function of one variable 32
- 2.8 Exercises 36

3	NUMERICAL LINEAR				
	ALGEBRA BACKGROUND	40			

3.1	Vector	and	matrix	norms	and	ortho	gonality	1 4

- 3.2 Solving systems of linear equations—matrix factorizations 47
- 3.3 Errors in solving linear systems 51
- 3.4 Updating matrix factorizations 55
- 3.5 Eigenvalues and positive definiteness 58
- 3.6 Linear least squares 60
- 3.7 Exercises 66

| | 4 | | MULTIVARIABLE CALCULUS BACKGROUND 69

- 4.1 Derivatives and multivariable models 69
- 4.2 Multivariable finite-difference derivatives 77
- 4.3 Necessary and sufficient conditions for unconstrained minimization 80
- 4.4 Exercises 83

|| 5 || NEWTON'S METHOD FOR NONLINEAR EQUATIONS AND UNCONSTRAINED MINIMIZATION 86

- 5.1 Newton's method for systems of nonlinear equations 86
- 5.2 Local convergence of Newton's method 89
- 5.3 The Kantorovich and contractive mapping theorems 92
- 5.4 Finite-difference derivative methods for systems of nonlinear equations 94
- 5.5 Newton's method for unconstrained minimization 99
- 5.6 Finite-difference derivative methods for unconstrained minimization 103
- 5.7 Exercises 107

|| 6|| GLOBALLY CONVERGENT MODIFICATIONS OF NEWTON'S METHOD 111

- 6.1 The quasi-Newton framework 112
- 6.2 Descent directions 113
- 6.3 Line searches 116
 - 6.3.1 Convergence results for properly chosen steps 120
 - 6.3.2 Step selection by backtracking 126
- 6.4 The model-trust region approach 129
 - 6.4.1 The locally constrained optimal ("hook") step 134
 - 6.4.2 The double dogleg step 139
 - 6.4.3 Updating the trust region 143
- 6.5 Global methods for systems of nonlinear equations 147
- 6.6 Exercises 152

||7|| STOPPING, SCALING, AND TESTING 155

- 7.1 Scaling 155
- 7.2 Stopping criteria 159
- 7.3 Testing 161
- 7.4 Exercises 164

|| 8 || SECANT METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS 168

- 8.1 Broyden's method 169
- 8.2 Local convergence analysis of Broyden's method 174
- 8.3 Implementation of quasi-Newton algorithms using Broyden's update 186
- 8.4 Other secant updates for nonlinear equations 189
- 8.5 Exercises *190*

|| 9 || SECANT METHODS FOR UNCONSTRAINED MINIMIZATION 194

- 9.1 The symmetric secant update of Powell 195
- 9.2 Symmetric positive definite secant updates 198
- 9.3 Local convergence of positive definite secant methods 203
- 9.4 Implementation of quasi-Newton algorithms using the positive definite secant update 208
- 9.5 Another convergence result for the positive definite secant method 210
- 9.6 Other secant updates for unconstrained minimization 211
- 9.7 Exercises 212

|| 10 || NONLINEAR LEAST SQUARES 218

- 10.1 The nonlinear least-squares problem 218
- 10.2 Gauss-Newton-type methods 221
- 10.3 Full Newton-type methods 228
- 10.4 Other considerations in solving nonlinear least-squares problems 233
- 10.5 Exercises 236

|| 11 || METHODS FOR PROBLEMS WITH SPECIAL STRUCTURE 239

- 11.1 The sparse finite-difference Newton method 240
- 11.2 Sparse secant methods 242
- 11.3 Deriving least-change secant updates 246
- 11.4 Analyzing least-change secant methods 251
- 11.5 Exercises 256

|| A || APPENDIX: A MODULAR SYSTEM OF ALGORITHMS FOR UNCONSTRAINED MINIMIZATION AND NONLINEAR EQUATIONS (by Robert Schnabel) 259

|| B || APPENDIX: TEST PROBLEMS 361 (by Robert Schnabel)

REFERENCES 364

AUTHOR INDEX 371

SUBJECT INDEX 373