Nonlinear Ordinary Differential Equations and Their Applications

P. L. SACHDEV

Indian Institute of Science Bangalore, Indice

Contents

PREFACE

INTRODUCTION		ix	
1.	REVIEW OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS		
	1.1	Introduction	1
	1.2	Linear and Nonlinear ODE	3
	1.3	Initial and Boundary Value Problems	6
	1.4	Elements of Second-Order Linear DE	9
	1.5	Method of Variation of Parameters	13
	1.6	Green's Function	16
2.	TRANSFORMATIONS OF NONLINEAR ORDINARY		
	DIF	FERENTIAL EQUATIONS	23
	2.1	Introduction	23
	2.2	Simple Symmetries—Equidimensionality and Scale Invariance	24
			i.e.

x Contents

	2.3	First-Order Nonlinear Equations and Their	20
		Linearization—The Riccati Equation	28
	2.4	Abel's Equation	30
	2.5	Relation Between Third-Order Linear Equa-	722
		tions and Second-Order Nonlinear Equations	33
	2.6	Relationship Betwen Linear and Nonlinear	
		Second-Order Equations	37
	2.7	Exact Linearization of Nonlinear	
		Autonomous Second-Order Equations	0000
		via Factoring	42
	2.8	Transformation of Nonlinear Equations	
		to Nonlinear Integrable Forms	48
	29	Reducing Nonlinear Nonautonomous	
		Second-Order Equations to First-	
		Order Equations	52
	2.10	Transforming Nonlinear Nonautonomous	
		Second-Order Equations to the Lie Plane	59
	2.11	Langmuir's Equation—When Transfor-	
		mations Do Not Work	63
	2.12	Example of an Equation Which Is "Solved"	
		Exactly, but Has a Solution too Implicit	
		to Be of Practical Use	66
3.	CEDI	ES SOLUTIONS OF NONLINEAR DIFFERENTIAL	
3+		ATIONS	69
	LQU	ATIONS	
	3.1	Introduction	69
	3.2	Classification of Singular Points of	
	200	Homogeneous Linear Differential	
		Equations	70
	3.3	The Point at Infinity	79
	3.4	Singularities of Nonlinear Differential	
		Equations	81
	3.5	First-Order Binomial Equations	87
	3.6	Singularities of the Briot-Bouquet Equation	89
	3.7	Solutions of the Briot-Bouquet Equation	94
	3.8	Power Series Solutions of Nonlinear DE	97
	3.9	Method of Majorants	109
	3.10	Construction of Majorant Equations	112
	3.11	Series Solution of Boundary Value	112
	-5-11	Problems	119
	3.12	Asymptotic Series Solution of Boundary	117
	3.12	Value Problems	123
	3.13		143
	3.13	Computation of Radius of Convergence of a Series	129
		ot a series	129

Contents xi

4.	LOCAL AND GLOBAL ANALYSIS OF NONLINEAR DIFFERENTIAL EQUATIONS		133
	4.1	Introduction	133
	4.2	Local Analysis About Singular Points—	133
	4.2		4.40
	4.3	The Painlevé Property	140
	4.4	Large-Time (Asymptotic) Behavior	152
	4.4	Embedding of Asymptotic Solutions in	
		a Larger Family—The Thomas-Fermi	
		Equation	165
	4.5	Global Solutions of Nonlinear Boundary	50.53
		Value Problems by Iteration	176
	4.6	The Connection Problem for Euler-	
	1972317	Painlevé Equations	187
	4.7	Other Nonlinear DE Related to Euler-	
		Painlevé Equations	201
5.	EXISTENCE THEORY FOR BOUNDARY VALUE		
	PRO	BLEMS VIA SHOOTING TECHNIQUES	213
	5.1	Introduction	213
	5.2	Elementary Discussion of Boundary	
		Value Problems	214
	5.3	Lagerstrom Model for Flow at Low	
		Reynolds Numbers	220
	5.4	Similarity Solutions of the Porous	200
		Media Equation	224
	5.5	A Differential Equation Arising in	224
	100	Electromagnetic Theory	231
	5.6	A Boundary Value Problem Associated	231
	0.0	with an Equation of Plasma Physics	240
	5.7	Some Other Boundary Value Problems	243
	2.7	Some Other Boundary Value Problems	243
6.	PHA	SE SPACE STUDY OF AUTONOMOUS	
	SYSTEMS		245
	6.1	Introduction	245
	6.2	One-Dimensional Phase Space or the	
		Phase Line	247
	6.3	Nature of Singular Points in the Phase	
		Plane	249
	6.4	Examples of Simple Critical Points	261
	6.5	Singular Points at Infinity	268
	6.6	Nonsimple Singular Points	273
	6.7	Quadratic Systems	284
	6.8	Normal Quadratic Systems	207

xii	Content

	6.9	Nonlinear Diffusion Equation of Population Growth—Fisher's Equation	303
	6.10	Boundary Value Problems for a Nonlinear	303
	0.10	Diffusion Equation	308
	6.11	Collapse of a Spherical Cavity in a	
		Perfect Gas	316
	6.12	Nonlinear Traveling Waves in an Isothermal	
		Atmosphere	324
	6.13	Singular Points of a System of Three Linear	
		Differential Equations	330
7.	SINGULARITY STRUCTURE AND CHAOTIC BEHAV-		
	IOR	OF NONLINEAR ORDINARY DIFFERENTIAL	
	EQU	ATIONS	351
	7.1	Introduction	351
	7.2	The Lorenz System	365
	7.3	Henon-Heiles Hamiltonian System	394
	7.4	Some Other Hamiltonian Systems	409
	7.5	The Kuramoto Model	413
	7.6	Painlevé Property for Some Other Systems	419
8.	PAIN	ILEVÉ TRANSCENDENTS	421
	8.1	Introduction	421
	8.2	Special Solutions of Painlevé Equations	436
	8.3	Transformations and Special Solutions	
		of Painlevé Equations	442
	8.4	Solutions of Second-Order Nonlinear	
		DE with Irrational Right Sides	452
	8.5	The First Painlevé Equation	460
	8.6	The Second Painlevé Equation	473
	8.7	The Fourth Painlevé Equation	482
	8.8	The Fifth Painlevé Equation	493
	8.9	The Third Painlevé Equation	501
9.	APPLICATIONS OF THE THEORY OF NONLINEAR OR-		
	DINARY DIFFERENTIAL EQUATIONS TO SOLUTIONS		
		ARTIAL DIFFERENTIAL EQUATIONS—SOME	
	PHYSICAL PROBLEMS		512
	9.1	Introduction	512
	9.2	N-Wave Solutions of Nonplanar Burgers	
		Equation	513

Contents		xiii
9.3	Collapse of a Spherical Cavity in a	
	Perfect Gas—The Global Solution	520
9.4	The Converging Shock Wave from a	
	Spherical or Cylindrical Piston	529
9.5	Solutions of the Shallow-Water Equa-	
	tions Representing Gravity-Current	
	Releases	538
9.6	Generalized Similarity Solution for	
	Climb of a Bore over a Sloping Beach	545
REFEREN	NCES	559
INDEX		573