MEASURE AND INTEGRAL

An Introduction to Real Analysis

Richard L. Wheeden

Department of Mathematics Rutgers, the State University of New Jersey New Brunswick, New Jersey

Antoni Zygmund

Department of Mathematics University of Chicago Chicago, Illinois

MARCEL DEKKER, INC.

NEW YORK AND BASEL

Contents

Introduc	tion		٧
Chapter	1	Pretiminaries	1
		I. Points and Sets in R*	1
		2. Ra as a Metric Space	2
		3. Open and Closed Sets in R"; Special Sets	5
		4. Compact Sets; the Heine-Borel Theorem	8
		5. Functions	9
		6. Continuous Functions and Transformations	10
		7. The Riemann Integral	11
		Exercises	12
Chapter	2	Functions of Bounded Variation; the Riemann-	
		Stieltjes Integral	15
		1. Functions of Bounded Variation	15
		2. Rectifiable Curves	21
		3. The Riemann-Stieltjes Integral	23
		4. Further Results About Riemann-Stieltjes Integrals	28
		Exercises	31
Chapter	3	Lebesgue Measure and Outer Measure	33
		1. Lebesgue Outer Measure; the Cantor Set	33
		2. Lebesgue Measurable Sets	37
		3. Two Properties of Lebesgue Measure	40
		4. Characterizations of Measurability	42
		5. Lipschitz Transformations of R*	44
		6. A Nonmeasurable Set	46
		Exercises	47

III	Contents

Chapter	4	Lebesgue Measurable Functions	50
		1. Elementary Properties of Measurable Functions	51
		2. Semicontinuous Functions	55
		3. Properties of Measurable Functions: Egorov's	
		Theorem and Lusin's Theorem	56
		4. Convergence in Measure	59
		Exercises	61
Chapter	5	The Lebesgue Integral	64
		1. Definition of the Integral of a Nonnegative	
		Function	64
		2. Properties of the Integral	66
		 The Integral of an Arbitrary Measurable f 	71
		4. A Relation Between Riemann-Stieltjes and	
		Lebesgue Integrals; the L^p Spaces, 0	76
		Riemann and Lebesgue Integrals	83
		Exercises	85
Chapter	6	Repeated Integration	87
		1. Fubini's Theorem	87
		2. Tonelli's Theorem	91
		3. Applications of Fubini's Theorem	93
		Exercises	96
Chapter	7	Differentiation	98
		1. The Indefinite Integral	98
		2. Lebesgue's Differentiation Theorem	100
		3. The Vitali Covering Lemma	109
		4. Differentiation of Monotone Functions	111
		5. Absolutely Continuous and Singular Functions	115
		6. Convex Functions	118
		Exercises	123
Chapter	8	If Classes	125
		 Definition of L^p 	125
		2. Hölder's Inequality; Minkowski's Inequality	127
		3. Classes IP	130

Contents		ix
	 The Space L²; Orthogonality 	135
	6. Fourier Series; Parseval's Formula	137
	7. Hilbert Spaces	141
	Exercises	143
Chapter 9	Approximations of the Identity; Maximal Functions	145
	1. Convolutions	145
	2. Approximations of the Identity	148
	3. The Hardy-Littlewood Maximal Function	155
	4. The Marcinkiewicz Integral	157
	Exercises	159
Chapter 10	Abstract Integration	161
	1. Additive Set Functions; Measures	161
	2. Measurable Functions; Integration	167
	3. Absolutely Continuous and Singular Set	
	Functions and Measures	174
	 The Dual Space of L^p 	182
	5. Relative Differentiation of Measures	185
	Exercises	190
Chapter 11	Outer Measure; Measure	193
	1. Constructing Measures from Outer Measures	193
	2. Metric Outer Measures	196
	3. Lebesgue-Stieltjes Measure	197
	4. Hausdorff Measure	201
	The Carathéodory-Hahn Extension Theorem	204
	Exercises	208
Chapter 12	A Few Facts From Harmonic Analysis	211
	1. Trigonometric Fourier Series	211
	2. Theorems about Fourier Coefficients	217
	 Convergence of S[f] and S[f] 	222
	4. Divergence of Fourier Series	227
	5. Summability of Sequences and Series	229
	 Summability of S[f] and S[f] by the 	
	Method of the Arithmetic Mean	235

x	Contents
x	Contents

	7.	Summability of S[f] by Abel Means	246
	8,	Existence of \vec{j}	250
	9,	Properties of \hat{f} for $f \in L^p$, 1	256
	10.	Application of Conjugate Functions to Partial	
		Sums of S[f]	259
		Exercises	260
Notation			265
Index			267

Index