Boris A. Dubrovin Sergej P. Novikov Anatolij T. Fomenko

Geometria e topologia delle varietà

Volume secondo

Indice

ľ	ref	izione	10
		I. Esempi di varietà	
9	1.	Nozione di varietà	11
		1. Definizione di una varietà p. 11 — 2. Applicazioni di varietà; tensori su una varietà p. 15 — 3. Embeddings e immersioni di varietà, Varietà con bordo p. 18.	
6	4	Esempi elementari di varietà	19
		1. Superfici nello spazio euclideo. Gruppi di trasformazioni come varietà p. 19 — 2. Spazi proiettivi p. 24.	
5	3.	Nozioni utili della teoria dei gruppi di Lie	27
		 Struttura dell'intorno del punto unitario di un gruppo di Lie. Algebra di Lie del gruppo. Semisemplicità p. 27 — 2. Nozione di rappresentazione (lineare). Esempio di un gruppo di Lie non matriciale p. 33. 	
6	4.	Varietà complesse	36
		1. Definizioni e esempi p. 36 — 2. Superfici di Riemann come varietà p. 42.	
5	5.	Spazi omogenei elementari	45
		1. Azione di un gruppo su una varietà p. 45 — 2. Esempi di spazi omogenei p. 46.	
5	fi.	Spazi a curvatura costante (spazi simmetrici)	50
		 Nozione di spazio simmetrico p. 50 — 2. Gruppo di isometrie. Proprietà dell'algebra di Lie del gruppo p. 52 — 3. Spazi simmetrici del primo e del secondo tipo p. 54 — 4. I gruppi di Lie come spazi simmetrici p. 55 — 5. Costruzione degli spazi simmetrici. Esempi p. 57. 	
•	7	Varietà generate da elementi lineari	61
		1. Varietà costruite sui vettori tangenti p. 61 — 2. Fibrato normale ad una sottovarietà p. 64.	
			5

II. Nozioni preliminari. Richiami di elementi della teoria delle funzioni. Applicazioni differenziabili tipiche § 8. Partizione dell'unità. Applicazioni 67 Partizione dell'unità p. 68 - 2. Qualche esempio di partizione dell'unità. Integrazione su una varietà e formula di Stokes p. 71 - 3. Metriche invarianti p. 76. § 9. Realizzazione di varietà compatte sotto forma di superfici in RN 78 § 10. Proprietà delle applicazioni differenziabili di varietà 79 1. Approssimazione delle applicazioni continue mediante applicazioni differenziabili p. 79 — 2. Teorema di Sard p. 81 — 3. Regolarità trasversale p. 85 — 4. Funzioni di Morse p. 88. § 11. Applicazioni del teorema di Sard 92 Esistenza di embeddings e di immersioni p. 92 — 2. Funzioni di Morse come funzioni dell'altezza p. 94 - 3. Punti focali p. 97. III. Grado dell'applicazione. Indice d'intersezione. Applicazioni di gueste nozioni 100 § 12. Nozione di omotopia Definizione dell'omotopia. Approssimazione differenziabile delle applicazioni e delle omotopie p. 100 - 2. Omotopie relative p. 102. 103 § 13. Grado dell'applicazione Definizione del grado p. 103 — 2. Generalizzazioni della definizione del grado p. 105 - 3, Classificazione omotopa delle applicazioni di una varietà in una sfera p. 106 - 4. Alcuni esempi elementari p. 107. 110 § 14. Alcune applicazioni del grado Il grado e l'integrale p. 110 — 2. Grado del campo vettoriale su un'ipersuperficie p. 111 - 3. Numero di Whitney. Formula di Gauss-Bonnet p. 113 - 4. Indice di un punto singolare di un campo vettoriale p. 118 - 5. Superficie trasversale di un

campo vettoriale. Teorema di Poincaré-Bendixson p. 121.

 Definizione dell'indice d'intersezione p. 124 — 2. Singolarità totale di un campo vettoriale p. 126 — 3. Numero algebrico dei punti fissi. Teorema di Brouwer p. 128 — 4. Coefficiente di

§ 15. Indice d'intersezione e sue applicazioni

allacciamento p. 130.

124

IV. Varietà orientabili. Gruppo fondamentale. Rivestimenti (spazi fibrati e fibre discrete)

§ 16. Varietà orientabili e omotopia dei cammini chiusi

		 Trasporto dell'orientamento lungo un cammino p. 132 — Esempi di varietà non orientabili p. 134. 	
8	17.	Gruppo fondamentale	135
		1. Definizione del gruppo fondamentale p. 135 — 2. Influenza del punto di base p. 136 — 3. Classi di omotopia libera di applicazioni di un cerchio p. 137 — 4. Equivalenza di omotopia p. 138 — 5. Esempi p. 139 — 6. Gruppo fondamentale e orientamento delle varietà p. 141.	
5	18.	Rivestimento e sollevamento delle omotopie	142
		 Definizione e proprietà fondamentali dei rivestimenti p. 142 — Esempi elementari. Rivestimento universale p. 144 — Rivestimenti ramificati. Superfici di Riemann p. 146 — Rivestimenti e gruppi discreti p. 149. 	
5	19.	Rivestimenti e gruppo fondamentale. Calcolo del gruppo fondamentale di alcune varietà	150
		1. Monodromia p. 150 — 2. Calcolo del gruppo fondamentale mediante rivestimenti p. 152 — 3. Gruppo di omologia elementare p. 155.	
8	20,	Gruppi discreti degli spostamenti del piano di Lobačev-skij	158
		V. Gruppi di omotopia	
ş	21.	Definizione dei gruppi di omotopia assoluti e relativi. Esempi	172
		 Definizioni fondamentali p. 172 — 2. Gruppi di omotopia relativi. Successione esatta di una coppia p. 175. 	
5	22.	Sollevamento delle omotopie. Gruppi di omotopia dei rivestimenti e degli spazi di lacci	178
		 Nozione di fibrazione p. 178 — 2. Successione esatta di una fibrazione p. 180 — 3. Dipendenza dei gruppi di omotopia dal punto di base p. 182 — 4. Caso dei gruppi di Lie p. 185 — 5. Moltiplicazione di Whitehead p. 188. 	
9	23.	Alcune notazioni sui gruppi di omotopia delle sfere. Varietà dotate di un riferimento normale. Invariante di Hopf	190
		1. Varietà dotate di un riferimento normale e gruppi di omotopia delle sfere p. 190 — 2. Sospensione p. 195 — 3. Calcolo dei gruppi $\pi_{n+1}\left(S^n\right)$ p. 197 — 4. Gruppi $\pi_{n+2}\left(S^n\right)$ p. 198.	
			-

132

VI. Fibrati differenziabili (prodotti antisimmetrici)

§ 24. Teoria omotopa dei fibrati differenziabili

202

		 Nozione di fibrato differenziabile p. 202 — 2. Connessione p. 206 — 3. Calcolo dei gruppi di omotopia mediante fibrati p. 208 — 4. Classificazione dei fibrati p. 215 — 5. Fibrati vet- toriali e operazioni su di essi p. 219 — 6. Funzioni meromorfe p. 221 — 7. Formula di Picard-Lefschetz p. 226. 	
5	25.	Geometria differenziale dei fibrati differenziabili	228
		 G-connessioni nei fibrati principali p. 228 — 2. Esempi di G-connessioni nei fibrati associati p. 233 — 3. Curvatura p. 236 — 4. Classi caratteristiche. Costruzioni p. 241 — 5. Classi caratteristiche. Classificazione p. 248. 	
S	26.	Nodi e allacciamenti. Trecce	256
		1. Gruppo di un nodo p. 256 — 2. Polinomio di Alexander p. 258 — 3. Fibrato associato al nodo p. 259 — 4. Allacciamenti p. 261 — 5. Trecce p. 263.	
		VII. Alcuni esempi di sistemi dinamici e di fogliettamenti sulle varietà	
ş	27.	Elementi di teoria qualitativa dei sistemi dinamici. Va- rietà bidimensionali	266
		1. Definizioni fondamentali p. $266-2$. Sistemi dinamici su un toro p. 270.	
8	28.	Sistemi hamiltoniani sulle varietà. Teorema di Liouville. Esempi	275
		1. Sistemi hamiltoniani sull fibrato cotangente p. 275 — 2. Sistemi hamiltoniani sulle varietà simplettiche p. 276 — 3. Flussi geodetici p. 279 — 4. Teorema di Liouville p. 281 — 5. Esempi p. 283.	
§	29.	Fogliettamenti	287
		1. Definizioni fondamentali p. $287-2$. Alcuni esempi di fogliettamenti di codimensione 1 p. 291 .	
100	30.	Problemi variazionali alle derivate di ordine superiore, Sistemi di campi hamiltoniani	296
		 Formalismo hamiltoniano p. 296 — 2. Alcuni esempi p. 299 — 3. Formalismo hamiltoniano dei sistemi di campo p. 302. 	

VIII. Struttura globale delle soluzioni dei problemi variazionali a più dimensioni

; 31.	Alcune varietà della relatività generale	312
	 Posizione del problema p. 312 — 2. Soluzioni a simmetria sferica p. 313 — 3. Soluzioni a simmetria assiale p. 321 — 4. Model- li cosmologici p. 325 — 5. Modelli di Friedman p. 327 — 6. Mo- delli anisotropi nel vuoto p. 331 — 7. Modelli più generali p. 335. 	
32.	Alcuni esempi di soluzioni globali delle equazioni di Yang-Mills, Campi chirali	341
	 Considerazioni generali. Soluzioni di monopolo p. 341 —2. Equazione di dualità p. 345 — 3. Campi chirali. Integrale di Dirichlet p. 348. 	
§ 333.	Minimo delle sottovarietà complesse	357
Bibliografia		
In lies explities		