## John B. Conway

## A Course in Functional Analysis

Second Edition



Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong

## Contents

Preface

| 'refa | ice to the Second Edition                                          | Хi |
|-------|--------------------------------------------------------------------|----|
|       | APTER I                                                            |    |
| Hilb  | ert Spaces                                                         |    |
| ğ1.   | Elementary Properties and Examples                                 | 1  |
| §2.   | Orthogonality                                                      | 7  |
| \$3.  | The Riesz Representation Theorem                                   | 11 |
| 54.   | Orthonormal Sets of Vectors and Bases                              | 14 |
| \$5.  | Isomorphic Hilbert Spaces and the Fourier Transform for the Circle | 19 |
| §6.   | The Direct Sum of Hilbert Spaces                                   | 23 |
| CH/   | APTER II                                                           |    |
| Ope   | rators on Hilbert Space                                            |    |
| §1.   | Elementary Properties and Examples                                 | 26 |
| 52.   | The Adjoint of an Operator                                         | 31 |
| 63.   | Projections and Idempotents; Invariant and Reducing Subspaces      | 36 |
| \$4.  | Compact Operators                                                  | 41 |
| \$5.  | The Diagonalization of Compact Self-Adjoint Operators              | 46 |
| §6.*  | An Application: Sturm-Liouville Systems                            | 49 |
| 57.   | The Spectral Theorem and Functional Calculus for Compact Normal    |    |
|       | Operators                                                          | 54 |
| §8.*  | Unitary Equivalence for Compact Normal Operators                   | 60 |
| CH/   | APTER III                                                          |    |
| Banı  | ach Spaces                                                         |    |
| §1.   | Elementary Properties and Examples                                 | 63 |
| 52.   | Linear Operators on Normed Spaces                                  | 67 |

| 9.6460.0 | C        |
|----------|----------|
| xiv      | Contents |

| \$3.  | Finite Dimensional Normed Spaces                          | 69  |
|-------|-----------------------------------------------------------|-----|
| \$4.  | Quotients and Products of Normed Spaces                   | 70  |
| \$5.  | Linear Functionals                                        | 73  |
| §6.   | The Hahn-Banach Theorem                                   | 77  |
| \$7.* | An Application: Banach Limits                             | 82  |
| §8.*  | An Application: Runge's Theorem                           | 83  |
| \$9.* | An Application: Ordered Vector Spaces                     | 86  |
| §10.  | The Dual of a Quotient Space and a Subspace               | 88  |
| §11.  | Reflexive Spaces                                          | 89  |
| 612   | The Open Mapping and Closed Graph Theorems                | 90  |
| §13.  | Complemented Subspaces of a Banach Space                  | 93  |
| §14.  | The Principle of Uniform Boundedness                      | 95  |
| CHA   | APTER IV                                                  |     |
| Loca  | ally Convex Spaces                                        |     |
| 81.   | Elementary Properties and Examples                        | 99  |
| 62.   |                                                           | 105 |
| 63.   | Some Geometric Consequences of the Hahn-Banach Theorem    | 108 |
| 84.*  | Some Examples of the Dual Space of a Locally Convex Space | 114 |
| §5.*  | Inductive Limits and the Space of Distributions           | 116 |
|       | APTER V                                                   |     |
| wea   | k Topologies                                              |     |
| §1.   | Duality                                                   | 124 |
| \$2.  |                                                           | 128 |
| \$3.  | Alaoglu's Theorem                                         | 130 |
|       | Reflexivity Revisited                                     | 131 |
|       | Separability and Metrizability                            | 134 |
|       | An Application: The Stone-Čech Compactification           | 137 |
| 200   | The Krein-Milman Theorem                                  | 141 |
| \$8.  |                                                           | 145 |
|       | The Schauder Fixed Point Theorem                          | 149 |
|       | The Ryll-Nardzewski Fixed Point Theorem                   | 151 |
|       | An Application: Haar Measure on a Compact Group           | 154 |
|       | The Krein-Smulian Theorem                                 | 159 |
| 915.* | Weak Compactness                                          | 163 |
| CH/   | APTER VI                                                  |     |
| Line  | ar Operators on a Banach Space                            |     |
| §1.   | The Adjoint of a Linear Operator                          | 166 |
|       | The Banach-Stone Theorem                                  | 171 |
|       | Compact Operators                                         | 173 |
|       | Invariant Subspaces                                       | 178 |
| §5.   | Weakly Compact Operators                                  | 183 |

Contents xv

|      | PEED III                                                                          |            |
|------|-----------------------------------------------------------------------------------|------------|
|      | APTER VII                                                                         |            |
|      | ich Algebras and Spectral Theory for                                              |            |
| Ope  | rators on a Banach Space                                                          |            |
| 61.  | Elementary Properties and Examples                                                | 187        |
| 52   |                                                                                   | 191        |
| 63.  | The Spectrum                                                                      | 195        |
| 54.  | The Riesz Functional Calculus                                                     | 199        |
| 65.  | Dependence of the Spectrum on the Algebra                                         | 205        |
| 56.  | The Spectrum of a Linear Operator                                                 | 208        |
| 67.  | The Spectral Theory of a Compact Operator                                         | 214        |
| §8.  | Abelian Banach Algebras                                                           | 218        |
| 89.  | The Group Algebra of a Locally Compact Abelian Group                              | 223        |
| CHA  | APTER VIII                                                                        |            |
| C*-A | Algebras                                                                          |            |
| 51.  | Elementary Properties and Examples                                                | 232        |
| 62.  | Abelian C*-Algebras and the Functional Calculus in C*-Algebras                    | 236        |
| 63.  | The Positive Elements in a C*-Algebra                                             | 240        |
| 64.* | Ideals and Quotients of C*-Algebras                                               | 245        |
| 55.* | Representations of C*-Algebras and the Gelfand-Naimark-Segal                      |            |
|      | Construction                                                                      | 248        |
|      | PTER IX                                                                           |            |
| Norr | nal Operators on Hilbert Space                                                    |            |
| 51.  | Spectral Measures and Representations of Abelian C*-Algebras                      | 255        |
| \$2  | The Spectral Theorem                                                              | 262        |
| \$3. | Star-Cyclic Normal Operators                                                      | 268        |
| 54.  | Some Applications of the Spectral Theorem                                         | 271        |
| \$5. | Topologies on $\mathcal{B}(\mathcal{H})$                                          | 274        |
| \$6. | Commuting Operators                                                               | 276        |
| 57.  | Abelian von Neumann Algebras                                                      | 281        |
| \$8. | The Functional Calculus for Normal Operators:                                     | 175-12-0-1 |
| 100  | The Conclusion of the Saga                                                        | 285        |
| §9.  | Invariant Subspaces for Normal Operators                                          | 290        |
| §10. | Multiplicity Theory for Normal Operators:<br>A Complete Set of Unitary Invariants | 293        |
| cm   | \$200 BO \$500 BO BO BO \$500 BO \$100 BO BO BO                                   |            |
|      | APTER X                                                                           |            |
| Unb  | ounded Operators                                                                  |            |
| \$1. | Basic Properties and Examples                                                     | 303        |
| 52   | Symmetric and Self-Adjoint Operators                                              | 308        |
| §3.  | The Cayley Transform                                                              | 316        |
| §4.  | Unbounded Normal Operators and the Spectral Theorem                               | 319        |
| §5.  | Stone's Theorem                                                                   | 327        |
| §6.  | The Fourier Transform and Differentiation                                         | 334        |
| 57.  | Moments                                                                           | 343        |

| xvi | Contents |
|-----|----------|
|-----|----------|

| CHAPTER XI                               |     |
|------------------------------------------|-----|
| Fredholm Theory                          |     |
| §1. The Spectrum Revisited               | 347 |
| §2. Fredholm Operators                   | 349 |
| §3. The Fredholm Index                   | 352 |
| §4. The Essential Spectrum               | 358 |
| <ol> <li>The Components of SF</li> </ol> | 362 |
| §6. A Finer Analysis of the Spectrum     | 363 |
| APPENDIX A                               |     |
| Preliminaries                            |     |
| §1. Linear Algebra                       | 369 |
| §2. Topology                             | 371 |
| APENDIX B                                |     |
| The Dual of $L^p(\mu)$                   | 375 |
| APPENDIX C                               |     |
| The Dual of $C_o(X)$                     | 378 |
| Bibliography                             | 384 |
| List of Symbols                          | 391 |
| Index                                    |     |
|                                          |     |