Modular Functions and Dirichlet Series in Number Theory

Second Edition

With 25 Illustrations

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong

Contents

1.1	Introduction	1
1.2	Doubly periodic functions	1
1.3	Fundamental pairs of periods	2
1.4	Elliptic functions	2 4
1.5	Construction of elliptic functions	6
1.6	The Weierstrass & function	9
1.7	The Laurent expansion of p near the origin	11
1.8	Differential equation satisfied by p	11
1.9	The Eisenstein series and the invariants g_2 and g_3	12
1,10	The numbers e_1 , e_2 , e_3	13
1.11	The discriminant Δ	14
1.12	Klein's modular function J(τ)	15
1.13	Invariance of J under unimodular transformations	16
1.14	The Fourier expansions of $g_2(\tau)$ and $g_3(\tau)$	18
1.15	The Fourier expansions of $\Delta(\tau)$ and $J(\tau)$	20
	Exercises for Chapter 1	23
Chap	pter 2	
The	Modular group and modular functions	
2,1	Möbius transformations	26
2.2	The modular group Γ	28
2.3	Fundamental regions	30
2.4	Modular functions	34
		vii

Chapter 1 Elliptic functions

2.5	Special values of J	3
2.6	Modular functions as rational functions of J	4
2.7	Mapping properties of J	4
2.8	Application to the inversion problem for Eisenstein series	4
2.9	Application to Picard's theorem	4
	Exercises for Chapter 2	4
Chap	pter 3	
The	Dedekind eta function	
3.1	Introduction	4
3.2	Siegel's proof of Theorem 3.1	4
3.3	Infinite product representation for $\Delta(\tau)$	5
3.4	The general functional equation for $\eta(\tau)$	5
3.5	Iseki's transformation formula	5
3.6	Deduction of Dedekind's functional equation from Iseki's	
	formula	5
3.7	Properties of Dedekind sums	6
3.8	The reciprocity law for Dedekind sums	6
3.9	Congruence properties of Dedekind sums	6
3.10	The Eisenstein series $G_2(\tau)$	6
	Exercises for Chapter 3	71
Char	pter 4	
Con	gruences for the coefficients of the modular function j	
4.1	Introduction	7
4.2	The subgroup $\Gamma_0(q)$	7
4.3	Fundamental region of $\Gamma_0(p)$	7
4.4	Functions automorphic under the subgroup $\Gamma_0(p)$	71
4.5	Construction of functions belonging to $\Gamma_0(p)$	80
4.6	The behavior of f_p under the generators of Γ	8
4.7	The function $\varphi(\tau) = \Delta(q\tau)/\Delta(\tau)$	84
4.8	The univalent function $\Phi(\tau)$	86
4.9	Invariance of $\Phi(\tau)$ under transformations of $\Gamma_0(q)$	81
4.10	The function f_p expressed as a polynomial in Φ	88
	Exercises for Chapter 4	9
Chap	ster 5	
3.11.3.11.35	emacher's series for the partition function	
5.1	Introduction	94
5.2	The plan of the proof	95
5.3	Dedekind's functional equation expressed in terms of F	96
5.4	Farey fractions	97

5.5	Ford circles	99
5.6	Rademacher's path of integration	102
5.7	Rademacher's convergent series for $p(n)$	104
	Exercises for Chapter 5	110
Chap	oter 6	
Mod	lular forms with multiplicative coefficients	
6.1	Introduction	113
6.2	Modular forms of weight k	114
6.3	The weight formula for zeros of an entire modular form	115
6.4	Representation of entire forms in terms of G_4 and G_6	117
6.5	The linear space M_k and the subspace $M_{k,0}$	118
6.6	Classification of entire forms in terms of their zeros	119
6.7	The Hecke operators T_n	120
6.8	Transformations of order n	122
6.9	Behavior of $T_n f$ under the modular group	125
6.10	Multiplicative property of Hecke operators	126
6.11	Eigenfunctions of Hecke operators	129
6.12	Properties of simultaneous eigenforms	130
6.13	Examples of normalized simultaneous eigenforms	131
6.14	Remarks on existence of simultaneous eigenforms in $M_{28,0}$	133
6.15	Estimates for the Fourier coefficients of entire forms	134
6.16	Modular forms and Dirichlet series	136
	Exercises for Chapter 6	138
Char	ster 7	
Kroi	necker's theorem with applications	
7.1	Approximating real numbers by rational numbers	142
7.2	Dirichlet's approximation theorem	143
7.3	Liouville's approximation theorem	146
7.4	Kronecker's approximation theorem: the one-dimensional	
	case	148
7.5	Extension of Kronecker's theorem to simultaneous	
	approximation	149
7.6	Applications to the Riemann zeta function	155
7.7	Applications to periodic functions	157
	Exercises for Chapter 7	159
Chap	oter 8	
Gen	eral Dirichlet series and Bohr's equivalence theorem	
8.1	Introduction	161
8.2	The half-plane of convergence of general Dirichlet series	161
8.3	Bases for the sequence of exponents of a Dirichlet series	166

8.4	Bohr matrices	167
8.5	The Bohr function associated with a Dirichlet series	168
8.6	The set of values taken by a Dirichlet series $f(s)$ on a line	
	$\sigma = \sigma_0$	170
8.7	Equivalence of general Dirichlet series	173
8.8	Equivalence of ordinary Dirichlet series	174
8.9	Equality of the sets $U_s(\sigma_0)$ and $U_s(\sigma_0)$ for equivalent	
	Dirichlet series	176
8.10	The set of values taken by a Dirichlet series in a neighborhood	
	of the line $\sigma = \sigma_0$	176
8.11	Bohr's equivalence theorem	178
8.12	Proof of Theorem 8.15	179
8.13	Examples of equivalent Dirichlet series. Applications of Bohr's	
	theorem to L-series	184
8.14	Applications of Bohr's theorem to the Riemann zeta function	184
	Exercises for Chapter 8	187
Suppl	lement to Chapter 3	190
Bibli	ography	196
Index	of special symbols	199
Index	ı	201