Applied Analysis by the Hilbert Space Method

An Introduction with Applications to the Wave, Heat, and Schrödinger Equations

Samuel S. Holland, Jr.

University of Massachusetts Amherst, Massachusetts

Contents

Preface		ν
A Note o	n Method	vii
('hapter	1. First Order Linear Differential Equations	1
1.1.	The Equation $a(x)y' + b(x)y = h(x)$	1
1.2.		4
1.3.		9
1.4.	Power Series Review	10
1.5.	The Initial Value Problem for a First Order Linear Differ-	
	ential Equation	18
Chapter	2. Second Order Linear Differential Equations	22
2.1.	Basic Concepts of Linear Algebra for Function Spaces	22
2.2.	The Initial Value Problem for a Second Order Linear	
	Homogeneous Differential Equation	28
2,3,	Dimension of the Kernel; General Solution; Abel's	
	Formula	35
2.4.	Kernel of Constant-Coefficient Expressions	39
2.5.	The Classical Linear Oscillator	43
2.6.	Guessing a Particular Solution to a Constant-Coefficient	
	Equation	48
2.7.	Particular Solution by Variation of Parameters	51
2.8.	The Kernel of Legendre's Differential Expression	53
		ix

Contents

2.9.	The Kernels of Other Classical Expressions	57
2.10.	Dirac's Delta Function and Green's Functions	59
	Appendix 2.A. Second Order Linear Differential Equa-	
	tions in the Complex Domain	69
Chapter 3.	Hilbert Space	78
3.1.	The Vibrating Wire	78
3.2.	Fourier Series	83
3.3.	Fourier Sine and Cosine Series	94
3.4.	Fourier Series over Other Intervals	99
3.5.	The Vibrating Wire, Revisited	102
3.6.	The Inner Product	108
3.7.	Schwarz's Inequality	118
3.8.	The Mean-Square Metric; Orthogonal Bases	127
3.9.	L ² Spaces	138
3.10.	Hilbert Space	149
Chapter 4.	 Linear Second Order Differential Operators in L² Spaces and Their Eigenvalues and Eigenfunctions 	157
4.1.	Compatibility	157
4.2.	Eigenvalues and Eigenfunctions	168
4.3.	Hermitian Operators	175
4.4.	Some General Operator Theory	184
4.5.	The One-Dimensional Laplacian	191
4.6.	Legendre's Operator and Its Eigenfunctions, the Legendre Polynomials	202
4.7.	Solving Operator Equations with Legendre's Operator	217
4.8.	More on Legendre Polynomials: Rodrigues' Formula, the Recursion Relation, and the Generating Function	224
4.9.	Hermite's Operator and Its Eigenfunctions, the Hermite Polynomials	233
4.10.	Solving Operator Equations with Hermite's Operator	243
4.11.	More on Hermite Polynomials: Rodrigues' Formula, the	
	Recursion Relation, and the Generating Function Appendix 4.A. Mathematical Aspects of Differential	248
	Operators in L ² Spaces	253
Chapter 5	. Schrödinger's Equations in One Dimension	267
5.1.	The Wave Equation by the Hilbert Space Method	267
5.2.	The Heat Equation by the Hilbert Space Method	273
5.3.	Quanta as Eigenvalues—the Time-Independent Schrödin- ger Equation in One Dimension	282
	Ser redominer in come remineration	

Contents xi

	Interpretation of the Ψ Function. The Time-Dependent
	Schrödinger Equation in One Dimension The Ouantum Linear Oscillator
	Solution of the Time-Dependent Schrödinger Equation A Brief History of Matrix Mechanics
5.9.	A General Formulation of Quantum Mechanics: States A General Formulation of Quantum Mechanics: Observables
(lapter 6.	Bessel's Operator and Bessel Functions
6.1.	The Wave Equation and Other Equations in Higher Dimensions; Polar Coordinates
6.2	Bessel's Equation and Bessel's Operator of Order Zero
6.3.	Jo(x): The Bessel Function of the First Kind of Order Zero
6.4.	J ₀ (x): Calculating Its Values and Finding Its Zeros
6.5.	The Eigenvalues and Eigenfunctions of Bessel's Operator of Order Zero
6.6.	The Vibrating Drumhead, the Heated Disk, and the Quantum Particle Confined to a Circular Region (the θ - Independent Case)
6.7.	θ Dependence: Bessel's Equation and Bessel's Operator of Integral Order p
6.8.	$J_p(x)$: The Bessel Functions of the First Kind of Integral Order p
6.9.	The Eigenvalues and Eigenfunctions of Bessel's Operator of Integral Order p
6.10.	Project on Bessel Functions of Nonintegral Order Appendix 6.A. Mathematical Theory of Bessel's Operator
(hapter 7.	Eigenvalues of the Laplacian, with Applications
7.1.	The Laplacian as a Hilbert Space Operator
7.2.	Differential Forms, the Stokes Theorem, and Integration by Parts in Two Variables
7.3.	The Laplacian Is Hermitian
7.4.	General Facts About the Eigenvalues of the Laplacian
7.5.	Eigenvalues of the Rectangle
7.6.	Eigenvalues of the Disk
7.7.	The Laplacian on the Sphere
7.8.	Eigenvalues of the Sphere; Spherical Harmonics
7.9.	The Hydrogen Atom
7.10.	Project on Laguerre's Operator and Laguerre Poly- nomials

xii	Content
XII	Conten

napter :	8. The Fourier Transform
8.1.	Complex Methods in Fourier Series; the Fourier Transform
8.2.	Plancherel's Theorem; Examples of Fourier Transforms
8.3.	Fourier Sine and Cosine Transforms
8.4.	The Fourier Transform Is a Unitary Operator on $\mathcal{L}(-\infty,\infty)$.
8.5.	The Fourier Transform Converts Differentiation into Mul- tiplication by the Independent Variable
8.6.	The Eigenvalues and Eigenfunctions of the Fourier Transform
	Appendix 8.A. $\int_{-\infty}^{\infty} ((\sin x)/x) dx = \pi$