INTRODUCTION TO MODERN STATISTICAL MECHANICS

David Chandler
University of California, Berkeley

New York Oxford
OXFORD UNIVERSITY PRESS

Contents

CHILI	pier 1. Anethiodynamics, Lumanication	43
1.1.	First Law of Thermodynamics and Equilibrium	4
1.2.	Second Law	8
1.3.	Variational Statement of Second Law	11
1.4.	Application: Thermal Equilibrium and Temperature	13
1.5.	Auxiliary Functions and Legendre Transforms	16
	Maxwell Relations	20
1.7.	Extensive Functions and the Gibbs-Duhem Equation	22
	Intensive Functions	24
	Additional Exercises	25
	Bibliography	27
Cha	pter 2. Conditions for Equilibrium and Stability	28
	Multiphase Equilibrium	29
2.2.	Stability	33
2.3.	Application to Phase Equilibria	37
2.4.	Plane Interfaces	44
	Additional Exercises	49
	Bibliography	52
Cha	pter 3. Statistical Mechanics	54
	The Statistical Method and Ensembles	55
200	Microcanonical Ensemble and the Rational Foundation	555
	of Thermodynamics	59
2.2	Canonical Ensemble	62

CONTENTS	×	H	į
CONTENTS	-	m	

3.4.	A Simple Example	66	
	Generalized Ensembles and the Gibbs Entropy Formula	69	
3.6.	Fluctuations Involving Uncorrelated Particles	72	
3.7.	Alternative Development of Equilibrium Distribution		
	Functions	74	
	Additional Exercises	79	
	Bibliography	84	
	pter 4. Non-Interacting (Ideal) Systems	86	
4.1.	Occupation Numbers	89	
	Photon Gas	90	
4.3.	Phonon Gas or Fluctuations of Atomic Positions in a		
	Cold Solid	92	
	Ideal Gases of Real Particles	94	
	Electrons in Metals	97	
	Classical Ideal Gases, the Classical Limit	100	
4.7.	Thermodynamics of an Ideal Gas of Structureless	1200	
	Classical Particles	103	
	A Dilute Gas of Atoms	105	
	Dilute Gas of Diatomic Molecules	106	
4.10	. Chemical Equilibria in Gases Additional Exercises	111	
		113	
	Bibliography	118	
Cha	pter 5. Statistical Mechanical Theory of Phase		
T	ransitions	119	
5.1.	Ising Model	119	
	Lattice Gas	124	
	Broken Symmetry and Range of Correlations	125	
	Mean Field Theory	131	
	Variational Treatment of Mean Field Theory	135	
	Renormalization Group (RG) Theory	139	
	RG Theory for the Two-Dimensional Ising Model	143	
5.8.	Isomorphism between Two-Level Quantum Mechanical	01300	
	System and the Ising Model	149	
	Additional Exercises	154	
	Bibliography	158	
Cha	pter 6. Monte Carlo Method in Statistical Mechanics	159	
	Trajectories	160	
	A Monte Carlo Trajectory	163	
	Non-Boltzmann Sampling	168	

xill	CONTENTS

6.4.	Quantum Monte Carlo	175
	Additional Exercises	178
	Bibliography	182
	Appendix	184
Cha	pter 7. Classical Fluids	188
	Averages in Phase Space	189
	Reduced Configurational Distribution Functions	195
	Reversible Work Theorem	201
7.4.	Thermodynamic Properties from $g(r)$	202
	Measurement of $g(r)$ by Diffraction	207
	Solvation and Chemical Equilibrium in Liquids	209
	Molecular Liquids	213
	Monte Carlo for Hard Disks	218
	Additional Exercises	223
	Bibliography	228
	Appendix	230
Cha	pter 8. Statistical Mechanics of Non-Equilibrium	
	ostems	234
	Systems Close to Equilibrium	235
	Onsager's Regression Hypothesis and Time Correlation	and the same of
0	Functions	237
8.3.	Application: Chemical Kinetics	242
	Another Application: Self-Diffusion	246
	Fluctuation-Dissipation Theorem	252
	Response Functions	255
	Absorption	258
	Friction and the Langevin Equation	261
150 150 1	Additional Exercises	266
	Bibliography	270
Inde		271