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Und dann erst kommt der , Ab-ge - sang) daf dernicht kurz und nichtzu lang,

From “Die Meistersinger von Niirnberg”, Richard Wagner

This final volume is concerned with some of the developments of the
subject in the 1960’s. In attempting to determine the simple groups, the
first step was to settle the conjecture of Burnside that groups of odd
order are soluble. The proof that this conjecture was correct is much too
long and complicated for presentation in this text, but a number of ideas
in the early stages of it led to a local theory of finite groups, some aspects
of which are discussed in Chapter X. Much of this discussion is a con-
tinuation of the theory of the transfer (see Chapter IV), but we also
introduce the generalized Fitting subgroup, which played a basic role
in characterization theorems, that is, in descriptions of specific groups
in terms of group-theoretical properties alone. One of the earliest and
most important such characterizations was given for Zassenhaus groups;
this is presented in Chapter XI. Characterizations in terms of the
centralizer of an involution are of particular importance in view of the
theorem of Brauer and Fowler. In Chapter XII, one such theorem is
given, in which the Mathieu group M, , and PSL(3, 3) are characterized.
This last chapter is mainly concerned with some aspects of multiply
transitive permutation groups loosely connected with the Mathieu
groups or with sharp n-fold transitivity, and several results from Chapter
XI are used in it. The two last chapters are, however, independent of
Chapter X. ;

Again we wish to acknowledge our indebtedness to the many
colleagues who have assisted us with this work. In addition to those
named in the preface to Volume II, thanks are due to George Glauber-
man, who read an earlier version of Chapter X. The contributions of all
have done a great deal to improve this volume, and it is with the greatest
pleasure that we express our gratitude to them.

January, 1982 Bertram Huppert, Mainz
Norman Blackburn, Manchester
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