

Hua Loo Keng

Introduction to Number Theory

Translated from the Chinese by Peter Shiu

With 14 Figures

Springer-Verlag Berlin Heidelberg New York 1982

Hua Loo Keng
Institute of Mathematics
Academia Sinica
Beijing
The People's Republic of China

Peter Shiu
Department of Mathematics
University of Technology
Loughborough
Leicestershire LE 113 TU
United Kingdom

ISBN-13:978-3-642-68132-5 e-ISBN-13:978-3-642-68130-1
DOI: 10.1007/978-3-642-68130-1

Library of Congress Cataloging in Publication Data. Hua, Loo-Keng, 1910-. Introduction to number theory. Translation of: Shu lun tao yin. Bibliography: p. Includes index. 1. Numbers, Theory of. I. Title. QA241.H7513.512'.7.82-645.ISBN-13:978-3-642-68132-5 (U.S.). AACR2

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under $\S 54$ of the German Copyright Law where copies are made for other than private use a fee is payable to "Verwertungsgesellschaft Wort", Munich.
© Springer-Verlag Berlin Heidelberg 1982
Softcover reprint of the hardcover 1st edition 1982
Typesetting: Buchdruckerei Dipl.-Ing. Schwarz' Erben KG, Zwettl.

Preface to the English Edition

The reasons for writing this book have already been given in the preface to the original edition and it suffices to append a few more points.

In the original edition I collected various recent results in number theory and put them in a text book suitable for teaching purposes. The book contains: The elementary proof of the prime number theorem due to Selberg and Erdös; Roth's theorem; A. O. Gelfond's solution to Hilbert's seventh problem; Siegel's theorem on the class number of binary quadratic forms; Linnik's proof of the HilbertWaring theorem; Selberg's sieve method and Schnirelman's theorem on the Goldbach problem; Vinogradov's result concerning least quadratic non-residues. It also contains some of my own results, for example, on the estimation of complete trigonometric sums, on least primitive roots, and on the Prouhet-Tarry problem. The reader can see that the book is much influenced by the work of Landau, Hardy, Mordell, Davenport, Vinogradov, Erdös and Mahler. In the quarter of a century between the two editions of the book there have been, of course, many new and exciting developments in number theory, and I am grateful to Professor Wang Yuan for incorporating many new results which will guide the reader to the literature concerning the latest developments.

It has been doubtful in the past whether number theory is a "useful" branch of mathematics. It is futile to get too involved in the argument but it may be relevant to point out some specific examples of applications. The fundamental principle behind the Public Key Code is the following: It is not difficult to construct a large prime number but it is not easy to factorize a large composite integer. For example, it only takes 45 seconds computing time to find the first prime exceeding 2^{200} (namely $2^{200}+235$, a number with 61 digits), but the computing time required to factorize a product of two primes, each with 61 digits, exceeds 4 million million years. According to Fermat's theorem: if p is prime then $a^{p-1} \equiv 1(\bmod p)$, and if n is composite then $a^{\phi(n)} \equiv 1(\bmod n), \phi(n)<n-1$. The determination of whether n is prime by this method is quite fast and this is included in the book. Next the location of the zeros of the Riemann Zeta function is a problem in pure mathematics. However, an interesting problem emerged during calculations of these zeros: Can mathematicians always rely on the results obtained from computing machines, and if there are mistakes in the machines how do we find out? Generally speaking calculations by machines have to be accepted by faith. For this reason Rosser, Schoenfeld and Yohe were particularly careful when they used computers to calculate the zeros of the Riemann Zeta function. In their critical examination of the program they discovered that there were several logical errors in the machine itself. The machine has been in use for some years and no-one had found these errors until
the three mathematicians wanted to scrutinize the results on a problem which has no practical applications. Apart from these there are applications from algebraic number theory and from the theory of rational approximations to real numbers which we need not mention.

Finally I must point out that this English edition owes its existence to Professor Heini Halberstam for suggesting it, to Dr. Peter Shiu for translating it and to Springer-Verlag for publishing it. I am particularly grateful to Peter Shiu for his excellent translation and to Springer-Verlag for their beautiful printing.

March 1981, Beijing
Hua Loo-Keng

Preface to the Original Edition

This preface has been revised more than once. The reason is that, during the last fifteen years, the author's knowledge of mathematics has changed and the needs of the readers are different. Moreover the content of the book has been so expanded during this period that the old preface has become quite unsuitable.

Everything is still very clear in my memory. The plan for the book was conceived round about 1940 when I first lectured on number theory at Kwang Ming University. I had written some 85 thousand words (characters) for the first draft and I estimated that another 25 thousand words were needed to complete the manuscript. But where was I to publish the work? I therefore could not summon up the energy required to complete the project. Later when lecturing in America I made additions and revisions to the manuscripts, but these were made for my teaching requirements and not with a view to publishing the book.

The real effort required for the task was given after the liberation. Since our country has very few reference books there is need for a broad introductory text in number theory. It seems a little peculiar that, even though we have been busier after the liberation, with the help of comrades the project actually has progressed faster. The book has also increased in size with the addition of new chapters and the incorporation of recent results which are within its scope.

Apart from giving a broad introduction to number theory and some of its fundamental principles the author has also tried to emphasize several points to its readers.

First there is a close relationship between number theory and mathematics as a whole. In the history of mathematics we often see the various problems, methods and concepts in number theory having a significant influence on the progress of mathematics. On the other hand there are also frequent instances of applying the methods and results of the other branches of mathematics to solve concrete problems in number theory. However it is often not easy to see this relationship in many existing introductory books. Indeed many "self-contained" books for beginners in number theory give an erroneous impression to their readers that number theory is an isolated and independent branch of mathematics. In this book the author tries to highlight this relationship within the scope of elementary number theory. For example: the relationship between the prime number theorem and Fourier series (the limitation on the nature of the book does not allow us to describe the relationship between the prime number theorem and integral functions); the partition problem, the four squares problem and their relationship to modular functions, the theory of quadratic forms, modular transformations and their relationship to Lobachevskian geometry etc.

Secondly an important progression in mathematics is the development of abstract concepts from concrete examples. Specific concrete examples are often the basis of abstract notions and the methods employed on the examples are frequently the source of deep and powerful techniques in advanced mathematics. One cannot go very far by merely learning bare definitions and methods from abstract notions without knowing the source of the definitions in the concrete situation. Indeed such an approach may lead to insurmountable difficulties later in research situations. The history of mathematics is full of examples in which whole subjects were developed from methods employed to tackle practical problems, for example, in mechanics and in physics. As for mathematics itself the most fundamental notions are "numbers" and "shapes". From "shapes" we have geometric intuition and from "numbers" we have arithmetic operations which are rich sources for mathematics. In this book the author tries to bring out the concrete examples underlying the abstract notions hoping that the readers may remember them when they make further advances in mathematics. For example, in Chapter 4 and Chapter 14, concrete examples are given to illustrate abstract algebra; indeed the example on finite fields describes the situation of general finite fields.

Thirdly, for beginners engaging in research, a most difficult feature to grasp is that of quality - that is the depth of a problem. Sometimes authors work courageously and at length to arrive at results which they believe to be significant and which experts consider to be shallow. This can be explained by the analogy of playing chess. A master player can dispose of a beginner with ease no matter how hard the latter tries. The reason is that, even though the beginner may have planned a good number of moves ahead, by playing often the master has met many similar and deeper problems; he has read standard works on various aspects of the game so that he can recall many deeply analyzed positions. This is the same in mathematical research. We have to play often with the masters (that is, try to improve on the results of famous mathematicians); we must learn the standard works of the game (that is, the "well-known" results). If we continue like this our progress becomes inevitable. This book attempts to direct the reader to work in this way. Although the nature of the book excludes the very deep results in number theory the author introduces different methods with varying depths. For example, in the estimation of the partition function $p(n)$, the simplest of algebraic methods is used first to get a rough estimate, then using a slightly deeper method the asymptotic formula for $\log p(n)$ is obtained. It is also indicated how an asymptotic formula for $p(n)$ can be obtained by a Tauberian method and how an asymptotic expansion for $p(n)$ can be obtained using results in advanced modular function theory and methods in analytic number theory. It is then easy to judge the various levels of depth in the methods used by following the successive improvement of results.

The book is not written for a university course; its content far exceeds the syllabus for a single course in number theory. However lecturers can use it as a course text by taking Chapters $1-6$ together with a suitable selection from the other chapters. Actually the book does not demand much previous knowledge in mathematics. Second year university students could understand most of the book, and those who know advanced calculus could understand the whole book apart from Sections 9.2, 12.14, 12.15 and 17.9 where some knowledge of complex
functions theory is required. Those studying by themselves should not find any special difficulties either.

I am eternally grateful to the following comrades: Yue Min Yi, Wang Yuan, Wu Fang, Yan Shi Jian, Wei Dao Zheng, Xu Kong Shi and Ren Jian Hua. Since 1953, when I began my lectures, they have continually given me suggestions, and sometimes even offer to help with the revision. They have also assisted me throughout the stages of publication, particularly comrade Yue Min Yi. I would also like to thank Professor Zhang Yuan Da for his valuable suggestion on a method of preparing the manuscript for the typesetter.

Although we have collectively laboured over the book it must still contain many mistakes. I should be grateful if readers would inform me of these, whether they are misprints, errors in content, or other suggestions. There is much material that appears here for the first time in a book, as well as some unpublished research material, so that there must be plenty of room for improvement. Concerning this point we invite the readers for their valuable contributions.

Table of Contents

List of Frequently Used Symbols XVII
Chapter 1. The Factorization of Integers 1
1.1 Divisibility 1
1.2 Prime Numbers and Composite Numbers 2
1.3 Prime Numbers 3
1.4 Integral Modulus 4
1.5 The Fundamental Theorem of Arithmetic 6
1.6 The Greatest Common Factor and the Least Common Multiple 7
1.7 The Inclusion-Exclusion Principle 10
1.8 Linear Indeterminate Equations 11
1.9 Perfect Numbers 13
1.10 Mersenne Numbers and Fermat Numbers. 14
1.11 The Prime Power in a Factorial 16
1.12 Integral Valued Polynomials 17
1.13 The Factorization of Polynomials 19
Notes 21
Chapter 2. Congruences 22
2.1 Definition 22
2.2 Fundamental Properties of Congruences 22
2.3 Reduced Residue System 23
2.4 The Divisibility of $2^{p-1}-1$ by p^{2} 24
2.5 The Function $\varphi(m)$ 26
2.6 Congruences 28
2.7 The Chinese Remainder Theorem 29
2.8 Higher Degree Congruences 31
2.9 Higher Degree Congruences to a Prime Power Modulus 32
2.10 Wolstenholme's Theorem 33
Chapter 3. Quadratic Residues 35
3.1 Definitions and Euler's Criterion 35
3.2 The Evaluation of Legendre's Symbol 36
3.3 The Law of Quadratic Reciprocity 38
3.4 Practical Methods for the Solutions 42
Table of Contents XI
3.5 The Number of Roots of a Quadratic Congruence 44
3.6 Jacobi's Symbol 44
3.7 Two Terms Congruences 47
3.8 Primitive Roots and Indices 48
3.9 The Structure of a Reduced Residue System 49
Chapter 4. Properties of Polynomials 57
4.1 The Division of Polynomials 57
4.2 The Unique Factorization Theorem 58
4.3 Congruences 60
4.4 Integer Coefficients Polynomials 61
4.5 Polynomial Congruences with a Prime Modulus 62
4.6 On Several Theorems Concerning Factorizations 63
4.7 Double Moduli Congruences 64
4.8 Generalization of Fermat's Theorem. 65
4.9 Irreducible Polynomials $\bmod p$ 66
4.10 Primitive Roots 67
4.11 Summary 68
Chapter 5. The Distribution of Prime Numbers 70
5.1 Order of Infinity 70
5.2 The Logarithm Function 71
5.3 Introduction 72
5.4 The Number of Primes is Infinite 75
5.5 Almost All Integers are Composite 78
5.6 Chebyshev's Theorem 79
5.7 Bertrand's Postulate 82
5.8 Estimation of a Sum by an Integral 85
5.9 Consequences of Chebyshev's Theorem 89
5.10 The Number of Prime Factors of n 94
5.11 A Prime Representing Function 96
5.12 On Primes in an Arithmetic Progression 97
Notes 99
Chapter 6. Arithmetic Functions 102
6.1 Examples of Arithmetic Functions 102
6.2 Properties of Multiplicative Functions 104
6.3 The Möbius Inversion Formula 105
6.4 The Möbius Transformation 107
6.5 The Divisor Function 111
6.6 Two Theorems Related to Asymptotic Densities 113
6.7 The Representation of Integers as a Sum of Two Squares 115
6.8 The Methods of Partial Summation and Integration 120
6.9 The Circle Problem 122
6.10 Farey Sequence and Its Applications 125
6.11 Vinogradov's Method of Estimating Sums of Fractional Parts 129
6.12 Application of Vinogradov's Theorem to Lattice Point Problems 134
6.13 Ω-results 138
6.14 Dirichlet Series 143
6.15 Lambert Series 146
Notes 147
Chapter 7. Trigonometric Sums and Characters 149
7.1 Representation of Residue Classes 149
7.2 Character Functions 151
7.3 Types of Characters 156
7.4 Character Sums 159
7.5 Gauss Sums 162
7.6 Character Sums and Trigonometric Sums 169
7.7 From Complete Sums to Incomplete Sums 170
7.8 Applications of the Character Sum $\sum_{x=1}^{p}\left(\frac{x^{2}+a x+b}{p}\right)$ 174
7.9 The Problem of the Distribution of Primitive Roots 177
7.10 Trigonometric Sums Involving Polynomials 180
Notes 185
Chapter 8. On Several Arithmetic Problems Associated with the Elliptic Modular Function 186
8.1 Introduction 186
8.2 The Partition of Integers 187
8.3 Jacobi's Identity 188
8.4 Methods of Representing Partitions 193
8.5 Graphical Method for Partitions 195
8.6 Estimates for $p(n)$ 199
8.7 The Problem of Sums of Squares 204
8.8 Density 210
8.9 A Summary of the Problem of Sums of Squares 215
Chapter 9. The Prime Number Theorem 217
9.1 Introduction 217
9.2 The Riemann ζ-Function 219
9.3 Several Lemmas 222
9.4 A Tauberian Theorem 226
9.5 The Prime Number Theorem 231
9.6 Selberg's Asymptotic Formula 233
9.7 Elementary Proof of the Prime Number Theorem 235
9.8 Dirichlet's Theorem 243
Notes 248
Chapter 10. Continued Fractions and Approximation Methods 250
10.1 Simple Continued Fractions 250
10.2 The Uniqueness of a Continued Fraction Expansion 252
10.3 The Best Approximation 254
10.4 Hurwitz's Theorem 255
10.5 The Equivalence of Real Numbers 257
10.6 Periodic Continued Fractions 260
10.7 Legendre's Criterion 261
10.8 Quadradic Indeterminate Equations 262
10.9 Pell's Equation 264
10.10 Chebyshev's Theorem and Khintchin's Theorem 266
10.11 Uniform Distributions and the Uniform Distribution of $n \vartheta(\bmod 1)$ 269
10.12 Criteria for Uniform Distributions 270
Chapter 11. Indeterminate Equations 276
11.1 Introduction 276
11.2 Linear Indeterminate Equations. 276
11.3 Quadratic Indeterminate Equations 278
11.4 The Solution to $a x^{2}+b x y+c y^{2}=k$ 278
11.5 Method of Solution 283
11.6 Generalization of Soon Go's Theorem 286
11.7 Fermat's Conjecture 288
11.8 Markoff's Equation 288
11.9 The Equation $x^{3}+y^{3}+z^{3}+\omega^{3}=0$ 290
11.10 Rational Points on a Cubic Surface 293
Notes 299
Chapter 12. Binary Quadratic Forms 300
12.1 The Partitioning of Binary Quadratic Forms into Classes 300
12.2 The Finiteness of the Number of Classes. 302
12.3 Kronecker's Symbol 304
12.4 The Number of Representations of an Integer by a Form 307
12.5 The Equivalence of Forms $\bmod q$ 309
12.6 The Character System for a Quadratic Form and the Genus 314
12.7 The Convergence of the Series $K(d)$ 317
12.8 The Number of Lattice Points Inside a Hyperbola and an Ellipse 318
12.9 The Limiting Average 318
12.10 The Class Number: An Analytic Expression 321
12.11 The Fundamental Discriminants 322
12.12 The Class Number Formula 323
12.13 The Least Solution to Pell's Equation 326
12.14 Several Lemmas 329
12.15 Siegel's Theorem 331
Notes 337
Chapter 13. Unimodular Transformations 338
13.1 The Complex Plane 338
13.2 Properties of the Bilinear Transformation 339
13.3 Geometric Properties of the Bilinear Transformation 342
13.4 Real Transformations 344
13.5 Unimodular Transformations 348
13.6 The Fundamental Region 350
13.7 The Net of the Fundamental Region 354
13.8 The Structure of the Modular Group 355
13.9 Positive Definite Quadratic Forms 356
13.10 Indefinite Quadratic Forms 358
13.11 The Least Value of an Indefinite Quadratic Form. 361
Chapter 14. Integer Matrices and Their Applications 365
14.1 Introduction 365
14.2 The Product of Matrices 371
14.3 The Number of Generators for Modular Matrices 377
14.4 Left Association 382
14.5 Invariant Factors and Elementary Divisors 384
14.6 Applications 387
14.7 Matrix Factorizations and Standard Prime Matrices 389
14.8 The Greatest Common Factor and the Least Common Multiple 394
14.9 Linear Modules 399
Chapter 15. p-adic Numbers 405
15.1 Introduction 405
15.2 The Definition of a Valuation 408
15.3 The Partitioning of Valuations into Classes 410
15.4 Archimedian Valuations 411
15.5 Non-Archimedian Valuations 412
15.6 The φ-Extension of the Rationals 415
15.7 The Completeness of the Extension 417
15.8 The Representation of p-adic Numbers 417
15.9 Application 421
Chapter 16. Introduction to Algebraic Number Theory 423
16.1 Algebraic Numbers. 423
16.2 Algebraic Number Fields 424
16.3 Basis 425
16.4 Integral Basis 427
16.5 Divisibility 430
16.6 Ideals 431
16.7 Unique Factorization Theorem for Ideals 433
16.8 Basis for Ideals 436
16.9 Congruent Relations 437
Table of Contents XV
16.10 Prime Ideals 438
16.11 Units 441
16.12 Ideal Classes 441
16.13 Quadratic Fields and Quadratic Forms 442
16.14 Genus 445
16.15 Euclidean Fields and Simple Fields 447
16.16 Lucas's Criterion for the Determination of Mersenne Primes 449
16.17 Indeterminate Equations 450
16.18 Tables 454
Notes 473
Chapter 17. Algebraic Numbers and Transcendental Numbers 474
17.1 The Existence of Transcendental Numbers 474
17.2 Liouville's Theorem and Examples of Transcendental Numbers 476
17.3 Roth's Theorem on Rational Approximations to Algebraic Numbers 478
17.4 Application of Roth's Theorem 478
17.5 Application of Thue's Theorem 480
17.6 The Transcendence of e 483
17.7 The Transcendence of π. 486
17.8 Hilbert's Seventh Problem 488
17.9 Gelfond's Proof 490
Notes 493
Chapter 18. Waring's Problem and the Problem of Prouhet and Tarry 494
18.1 Introduction 494
18.2 Lower Bounds for $g(k)$ and $G(k)$ 494
18.3 Cauchy's Theorem 496
18.4 Elementary Methods 499
18.5 The Easier Problem of Positive and Negative Signs 503
18.6 Equal Power Sums Problem 505
18.7 The Problem of Prouhet and Tarry 507
18.8 Continuation 511
Chapter 19. Schnirelmann Density 514
19.1 The Definition of Density and its History 514
19.2 The Sum of Sets and its Density 515
19.3 The Goldbach-Schnirelmann Theorem 518
19.4 Selberg's Inequality 519
19.5 The Proof of the Goldbach-Schnirelmann Theorem 525
19.6 The Waring-Hilbert Theorem 528
19.7 The Proof of the Waring-Hilbert Theorem 530
Notes 534
Chapter 20. The Geometry of Numbers. 535
20.1 The Two Dimensional Situation 535
20.2 The Fundamental Theorem of Minkowski 538
20.3 Linear Forms 540
20.4 Positive Definite Quadratic Forms 542
20.5 Products of Linear Forms 543
20.6 Method of Simultaneous Approximations 546
20.7 Minkowski's Inequality 547
20.8 The Average Value of the Product of Linear Forms 554
20.9 Tchebotaref's Theorem 556
20.10 Applications to Algebraic Number Theory. 558
20.11 The Least Value for $|\Delta|$ 561
Bibliography 565
Index 569

List of Frequently Used Symbols

$[\alpha]=$ the greatest integer not exceeding α.
$\{\alpha\}=\alpha-[\alpha]=$ the fractional part of α.
$\langle\alpha\rangle=$ the distance of α from the nearest integer, that is $\min (\alpha-[\alpha]$, $[\alpha]+1-\alpha)$.
$(a, b, \ldots, c)=$ the greatest common divisor of a, b, \ldots, c.
$[a, b, \ldots, c]=$ the least common multiple of a, b, \ldots, c.
$a \mid b$ means a divides b.
$a \nmid b$ means a does not divide b.
$p^{u} \| a$ means $p^{u} \mid a$ and $p^{u+1} \nmid a$.
$a \equiv b(\bmod m)$ means $m \mid a-b$.
$a \not \equiv b(\bmod m)$ means $m \nmid a-b$.
$\prod_{d \mid m}$ and $\sum_{d \mid m}$ denote the product and the sum over the divisors d of m.
$\left(\frac{n}{p}\right)$ is Legendre's symbol; see $\S 3.1$.
$\left(\frac{n}{m}\right)$ is Jacobi’s symbol; see $\S 3.6$.
$\left(\frac{d}{m}\right)$ where d is not a perfect square, $d \equiv 0$ or $1(\bmod 4)$ and $m>0$, is Kronecker's
symbol; see §12.3.
ind n denotes the index of n; see $\S 3.8$.
$\partial^{0} f$ denotes the degree of the polynomial $f(x)$.
\ll, O, o, \sim see $\S 5.1$.
$\omega(n)$ denotes the number of distinct prime divisors of n.
$\Omega(n)$ denotes the total number of prime divisors of n.
$\max (a, b, \ldots, c)$ denotes the greatest number among a, b, \ldots, c.
$\min (a, b, \ldots, c)$ denotes the least number among a, b, \ldots, c.
$\mathfrak{R} s$ denotes the real part of the complex number s.
γ denotes Euler's constant.
$\{a, b, c\}$ represents the quadratic form $a x^{2}+b x y+c y^{2}$; see $\S 12.1$.
$\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ denotes the cross ratio of the four points $z_{1}, z_{2}, z_{3}, z_{4}$; see §13.3.
$A \xlongequal{L} B$ means that the matrices A and B are left associated.
$N(\mathfrak{M})$ denotes the norm of \mathfrak{M}; see $\S 14.9$.
$\left\{a_{n}\right\}$ denotes the sequence a_{1}, a_{2}, \ldots.
\sim is an equivalence sign; see $\S 12.1, \S 13.6, \S 14.5$ and $\S 16.12$.
$\left[a_{0}, a_{1}, \ldots, a_{N}\right]$ or $a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{N}}$ denotes a finite continued fraction; $p_{n} / q_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$ is the n-th convergent of a continued fraction.
$S(\alpha)=\alpha^{(1)}+\alpha^{(2)}+\cdots+\alpha^{(n)}$ is the trace of α.
$N(\alpha)=\alpha^{(1)} \alpha^{(2)} \cdots \alpha^{(n)}$ is the norm of α.
$\Delta\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ denotes the discriminant of $\alpha_{1}, \ldots, \alpha_{n} ; \Delta=\Delta(R(\vartheta))$ denotes the discriminant of the integral basis for $R(\vartheta)$. See $\S 16.3$ and $\S 16.4$.
$\varphi(m)$ is Euler's function; see $\S 2.3$.
li x see §5.2.
$\pi(x)$ see $\S 5.3$.
$\mu(m)$ see $\S 6.1$.
$d(n)$ see §6.1.
$\sigma(n)$ see $\S 6.1$.
$\Lambda(n)$ see §6.1.
$\Lambda_{1}(n)$ see $\S 6.1$.
$\chi(n)$ see $\S 7.2$.
$p(n)$ see $\S 8.2$.
$\vartheta(n)$ see $\S 9.1$.
$\psi(n)$ see $\S 9.1$.
$g(k)$ see $\S 18.1$.
$G(k)$ see $\S 18.1$.
$v(k)$ see $\S 18.5$.
$N(k)$ see $\S 18.6$.
$M(k)$ see $\S 18.6$.
$\zeta(s)=\sum_{n=1}^{\infty} 1 / n^{s}$ is the Riemann Zeta function.
$e(f(x))=e^{2 \pi i f(x)}, e_{q}(f(x))=e^{2 \pi i f(x) / q}$.
$S(a, \chi)=\sum_{n=1}^{m} \chi(n) e^{2 \pi i a n / m}$ is a character sum.
$\tau(\chi)=S(1, \chi)$.
$S(n, m)=\sum_{x=0}^{m-1} e^{2 \pi i n x^{2} / m},(n, m)=1$, is a Gauss sum.
$S(q, f(x))=\sum_{x=0}^{q-1} e_{q}(f(x))$.

