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Preface to the English Edition 

The reasons for writing this book have already been given in the preface to the 
original edition and it suffices to append a few more points. 

In the original edition I collected various recent results in number theory and 
put them in a text book suitable for teaching purposes. The book contains: The 
elementary proof of the prime number theorem due to Selberg and Erdos; Roth's 
theorem; A. O. Gelfond's solution to Hilbert's seventh problem; Siegel's theorem 
on the class number of binary quadratic forms; Linnik's proof of the Hilbert
Waring theorem; Selberg's sieve method and Schnirelman's theorem on the 
Goldbach problem; Vinogradov's result concerning least quadratic non-residues. 
It also contains some of my own results, for example, on the estimation of complete 
trigonometric sums, on least primitive roots, and on the Prouhet-Tarry problem. 
The reader can see that the book is much influenced by the work of Landau, Hardy, 
Mordell, Davenport, Vinogradov, Erdos and Mahler. In the quarter of a century 
between the two editions of the book there have been, of course, many new and 
exciting developments in number theory, and I am grateful to Professor Wang 
Yuan for incorporating many new results which will guide the reader to the 
literature concerning the latest developments. 

It has been doubtful in the past whether number theory is a "useful" branch of 
mathematics. It is futile to get too involved in the argument but it may be relevant to 
point out some specific examples of applications. The fundamental principle behind 
the Public Key Code is the following: It is not difficult to construct a large prime 
number but it is not easy to factorize a large composite integer. For example, it only 
takes 45 seconds computing time to find the first prime exceeding 2200 (namely 
2200 + 235, a number with 61 digits), but the computing time required to factorize a 
product of two primes, each with 61 digits, exceeds 4 million million years. 
According to Fermat's theorem: if p is prime then ar 1 == 1 (mod p), and if n is 
composite then a4'(n) == 1 (modn), <J>(n) < n - 1. The determination of whether n is 
prime by this method is quite fast and this is included in the book. Next the location 
of the zeros of the Riemann Zeta function is a problem in pure mathematics. 
However, an interesting problem emerged during calculations of these zeros: Can 
mathematicians always rely on the results obtained from computing machines, and 
if there are mistakes in the machines how do we find out? Generally speaking 
calculations by machines have to be accepted by faith. For this reason Rosser, 
Schoenfeld and Yohe were particularly careful when they used computers to 
calculate the zeros of the Riemann Zeta function. In their critical examination of the 
program they discovered that there were several logical errors in the machine itself. 
The machine has been in use for some years and no-one had found these errors until 



VI Preface to the English Edition 

the three mathematicians wanted to scrutinize the results on a problem which has 
no practical applications. Apart from these there are applications from algebraic 
number theory and from the theory of rational approximations to real numbers 
which we need not mention. 

Finally I must point out that this English edition owes its existence to Professor 
Heini Halberstam for suggesting it, to Dr. Peter Shiu for translating it and to 
Springer-Verlag for publishing it. I am particularly grateful to Peter Shiu for his 
excellent translation and to Springer-Verlag for their beautiful printing. 

March 1981, Beijing Hua Loo-Keng 



Preface to the Original Edition 

This preface has been revised more than once. The reason is that, during the last 
fifteen years, the author's knowledge of mathematics has changed and the needs of 
the readers are different. Moreover the content of the book has been so expanded 
during this period that the old preface has become quite unsuitable. 

Everything is still very clear in my memory. The plan for the book was conceived 
round about 1940 when I first lectured on number theory at Kwang Ming 
University. I had written some 85 thousand words (characters) for the first draft 
and I estimated that another 25 thousand words were needed to complete the 
manuscript. But where was I to publish the work? I therefore could not summon up 
the energy required to complete the project. Later when lecturing in America I made 
additions and revisions to the manuscripts, but these were made for my teaching 
requirements and not with a view to publishing the book. 

The real effort required for the task was given after the liberation. Since our 
country has very few reference books there is need for a broad introductory text in 
number theory. It seems a little peculiar that, even though we have been busier after 
the liberation, with the help of comrades the project actually has progressed faster. 
The book has also increased in size with the addition of new chapters and the 
incorporation of recent results which are within its scope. 

Apart from giving a broad introduction to number theory and some of its 
fundamental principles the author has also tried to emphasize several points to its 
readers. 

First there is a close relationship between number theory and mathematics as a 
whole. In the history of mathematics we often see the various problems, methods 
and concepts in number theory having a significant influence on the progress of 
mathematics. On the other hand there are also frequent instances of applying the 
methods and results of the other branches of mathematics to solve concrete 
problems in number theory. However it is often not easy to see this relationship in 
many existing introductory books. Indeed many "self-contained" books for 
beginners in number theory give an erroneous impression to their readers that 
number theory is an isolated and independent branch of mathematics. In this book 
the author tries to highlight this relationship within the scope of elementary number 
theory. For example: the relationship between the prime number theorem and 
Fourier series (the limitation on the nature of the book does not allow us to describe 
the relationship between the prime number theorem and integral functions); the 
partition problem, the four squares problem and their relationship to modular 
functions, the theory .of quadratic forms, modular transformations and their 
relationship to Lobachevskian geometry etc. 
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Secondly an important progression in mathematics is the development of 
abstract concepts from concrete examples. Specific concrete examples are often the 
basis of abstract notions and the methods employed on the examples are frequently 
the source of deep and powerful techniques in advanced mathematics. One cannot 
go very far by merely learning bare definitions and methods from abstract notions 
without knowing the source of the definitions in the concrete situation. Indeed such 
an approach may lead to insurmountable difficulties later in research situations. 
The history of mathematics is full of examples in which whole subjects were 
developed from methods employed to tackle practical problems, for example, in 
mechanics and in physics. As for mathematics itself the most fundamental notions 
are "numbers" and "shapes". From "shapes" we have geometric intuition and 
from "numbers" we have arithmetic operations which are rich sources 
for mathematics. In this book the author tries to bring out the concrete 
examples underlying the abstract notions hoping that the readers may remember 
them when they make further advances in mathematics. For example, in 
Chapter 4 and Chapter 14, concrete examples are given to illustrate abstract 
algebra; indeed the example on finite fields describes the situation of general 
finite fields. 

Thirdly, for beginners engaging in research, a most difficult feature to grasp is 
that of quality - that is the depth of a problem. Sometimes authors work 
courageously and at length to arrive at results which they believe to be significant 
and which experts consider to be shallow. This can be explained by the analogy of 
playing chess. A master player can dispose of a beginner with ease no matter how 
hard the latter tries. The reason is that, even though the beginner may have planned 
a good number of moves ahead, by playing often the master has met many similar 
and deeper problems; he has read standard works on various aspects of the game so 
that he can recall many deeply analyzed positions. This is the same in mathematical 
research. We have to play often with the masters (that is, try to improve on the 
results of famous mathematicians); we must learn the standard works of the game 
(that is, the "well-known" results). If we continue like this our progress becomes 
inevitable. This book attempts to direct the reader to work in this way. Although 
the nature of the book excludes the very deep results in number theory the author 
introduces different methods with varying depths. For example, in the estimation of 
the partition function p(n), the simplest of algebraic methods is used first to get a 
rough estimate, then using a slightly deeper method the asymptotic formula for 
logp(n) is obtained. It is also indicated how an asymptotic formula for p(n) can be 
obtained by a Tauberian method and how an asymptotic expansion for p(n) can be 
obtained using results in advanced modular function theory and methods in 
analytic number theory. It is then easy to judge the various levels of depth in the 
methods used by following the successive improvement of results. 

The book is not written for a university course; its content far exceeds the 
syllabus for a single course in number theory. However lecturers can use it as a 
course text by taking Chapters 1 - 6 together with a suitable selection from the 
other chapters. Actually the book does not demand much previous knowledge in 
mathematics. Second year university students could understand most of the book, 
and those who know advanced calculus could understand the whole book apart 
from Sections 9.2, 12.14, 12.15 and 17.9 where some knowledge of complex 
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functions theory is required. Those studying by themselves should not find any 
special difficulties either. 

I am eternally grateful to the following comrades: Yue Min Yi, Wang Yuan, 
Wu Fang, Yan Shi Jian, Wei Dao Zheng, Xu Kong Shi and Ren Jian Hua. Since 
1953, when I began my lectures, they have continually given me suggestions, and 
sometimes even offer to help with the revision. They have also assisted me 
throughout the stages of publication, particularly comrade Yue Min Yi. I would 
also like to thank Professor Zhang Yuan Da for his valuable suggestion on a 
method of preparing the manuscript for the typesetter. 

Although we have collectively laboured over the book it must still contain many 
mistakes. I should be grateful if readers would inform me of these, whether they are 
misprints, errors in content, or other suggestions. There is much material that 
appears here for the first time in a book, as well as some unpublished research 
material, so that there must be plenty of room for improvement. Concerning this 
point we invite the readers for their valuable contributions. 

September 1956, Beijing Hua Loo-Keng 
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List of Frequently Used Symbols 

[a] = the greatest integer not exceeding a. 
{a} = a - [a] = the fractional part of a. 
(a) = the distance of a from the nearest integer, that is min(a - [a], 

[a] + 1 - a). 
(a, b, ... ,c) = the greatest common divisor of a, b, ... , c. 
[a,b, ... , c] = the least common multiple of a,b, ... , c. 
alb means a divides b. 
a,rb means a does not divide b. 
pUlia means pUla and pU+ l,ra. 
a == b (modm) means mla - b. 
a ;f= b (modm) means m,ra - b. 
nand L denote the product and the sum over the divisors d of m. 
dim dim 

G) is Legendre's symbol; see §3.1. 

(:) is Jacobi's symbol; see §3.6. 

(~) where dis not a perfect square, d == 0 or 1 (mod 4) and m > 0, is Kronecker's 

symbol; see §12.3. 
ind n denotes the index of n; see §3.8. 
aOf denotes the degree of the polynomialf(x). 
«, 0, 0, '" see §5.1. 
w(n) denotes the number of distinct prime divisors of n. 
Q(n) denotes the total number of prime divisors of n. 
max(a, b, ... ,c) denotes the greatest number among a, b, ... , c. 
min(a, b, ... ,c) denotes the least number among a, b, ... , c. 
9ts denotes the real part of the complex number s. 
')I denotes Euler's constant. 
{a,b,c} represents the quadratic form ax2 + bxy + cy2; see §12.1. 
(ZI>Z2,Z3,Z4) denotes the cross ratio of the four points- ZI>Z2,Z3,Z4; see 

§13.3. 
A !;. B means that the matrices A and B are left associated. 
N(IDl) denotes the norm of IDl; see §14.9. 
{an} denotes the sequence a I> a2, . .. . 
'" is an equivalence sign; see §12.l, §13.6, §14.5 and §16.12. 
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I I I .. . 
[ao, alo ... , aN] or ao + - - - denotes a fimte contmued fractIOn; 

al + a2 + ... + aN 
Pnlqn = [ao, al,· .. ,an] is the n-th convergent of a continued fraction. 

S(tX) = tX(1) + tX(2) + ... + tX(n) is the trace of tX. 

N(tX) = tX(l)tX(2) ••• tX(n) is the norm of tX. 

LI(tXlo ••• ,tXn) denotes the discriminant of tXl> ••• , tXn ; LI = LI(R(9» denotes the 
discriminant of the integral basis for R(9). See §16.3 and §16.4. 

<p(m) is Euler's function; see §2.3. 
Ii x see §5.2. 
n(x) see §5.3. 
Jl(m) see §6.1. 
den) see §6.1. 
q(n) see §6.1. 
A(n) see §6.1. 
AI(n) see §6.1. 
x(n) see §7.2. 
pen) see §8.2. 
9(n) see §9.1. 
"'(n) see §9.1. 
g(k) see §18.1. 
G(k) see §18.1. 
v(k) see §18.5. 
N(k) see §18.6. 
M(k) see §18.6. 

00 

'(s) = L I/ns is the Riemann Zeta function. 
n=1 

e(f(x» = e27tij(x), eq(f(x» = e27tij(x)/q. 
m 

Sea, X) = L x(n) e27tian/m is a character sum. 
n= I 

-rex) = S(I, X)· 
m-I 

S(n,m) = L e27tinx2/m, (n,m);= I, is a Gauss sum. 
x=o 

q-l 

S(q,J(x» = L eif(x». 
x=o 




