Steven Homer Alan L. Selman

COMPUTABILITY AND COMPLEXITY THEORY

With 17 Illustrations

Steven Homer
Department of Computer Science
Boston University
111 Cummington Street
Boston, MA 02215, USA
homer@cs.bu.edu

Alan L. Selman
Department of Computer Science and Engineering
226 Bell Hall
University at Buffalo
Buffalo, NY 14260-2000, USA
selman@cse.buffalo.edu

Series Editors

David Gries

Department of Computer Science
415 Boyd Studies Research Center
The University of Georgia

Athens, GA 30605, USA

Fred B. Schneider Department of Computer Science Upson Hall Cornell University Ithaca, NY 14853-7501, USA

```
Library of Congress Cataloging-in-Publication Data
Homer, S. (Steven)
Computability and complexity theory / Steven Homer, Alan L. Selman.
p. cm. — (Texts in computer science)
Includes bibliographical references and index.
ISBN 978-1-4419-2865-8
ISBN 978-1-4757-3544-4 (eBook)
DOI 10.1007/978-1-4757-3544-4
1. Computer science. 2. Computable functions. 3. Computational complexity.
I. Selman, Alan L. II. Title. III. Series.
QA76 .H6236 2001
004—dc21
00-053829
```

Printed on acid-free paper.

© 2001 Springer Science+Business Media New York Originally published by Springer-Verlag New York, Inc. in 2001 Softcover reprint of the hardcover 1st edition 2001

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by MaryAnn Brickner; manufacturing supervised by Joe Quatela. Typeset pages prepared using the authors' LATEX $2_{\mathcal{E}}$ files by Integre Technical Publishing Company, Inc.

SPIN 10769347

Contents

Pr	eface		vii
1	Prel	iminaries	1
	1.1	Words and Languages	1
	1.2	<i>K</i> -adic Representation	2
	1.3	Partial Functions	3
	1.4	Graphs	4
	1.5	Propositional Logic	6
		1.5.1 Boolean Functions	8
	1.6	Cardinality	8
		1.6.1 Ordered Sets	10
	1.7	Elementary Algebra	11
		1.7.1 Rings and Fields	11
		1.7.2 Groups	15
		1.7.3 Number Theory	17
2	Intr	oduction to Computability	22
	2.1	Turing Machines	23
	2.2	Turing-Machine Concepts	26
	2.3	Variations of Turing Machines	28
		2.3.1 Multitape Turing Machines	29
		2.3.2 Nondeterministic Turing Machines	31
	2.4	Church's Thesis	34
	2.5	RAMs	36
		2.5.1 Turing Machines for RAMS	39

хii

3	Und	ecidability	41		
	3.1	Decision Problems	41		
	3.2	Undecidable Problems	43		
	3.3	Pairing Functions	46		
	3.4	Computably Enumerable Sets	47		
	3.5	Halting Problem, Reductions, and Complete Sets	50		
		3.5.1 Complete Problems	52		
	3.6	<i>S-m-n</i> Theorem	53		
	3.7	Recursion Theorem	55		
	3.8	Rice's Theorem	57		
	3.9	Turing Reductions and Oracle Turing Machines	59		
	3.10	Recursion Theorem, Continued	66		
	3.11	References	69		
		Additional Homework Problems	70		
4	Intro	oduction to Complexity Theory	72		
•	4.1	Complexity Classes and Complexity Measures	74		
		4.1.1 Computing Functions	76		
	4.2	Prerequisites	77		
5	Raci	c Results of Complexity Theory	78		
	5.1	Linear Compression and Speedup	80		
	5.2	Constructible Functions	86		
		5.2.1 Simultaneous Simulation	87		
	5.3	Tape Reduction	90		
	5.4	Inclusion Relationships	97		
	٥	5.4.1 Relations between the Standard Classes	105		
	5.5	Separation Results	107		
	5.6	Translation Techniques and Padding	111		
	2.0	5.6.1 Tally Languages	113		
	5.7	Relations between the Standard Classes—Continued	115		
	01,	5.7.1 Complements of Complexity Classes:			
		The Immerman–Szelepcsényi Theorem	116		
	5.8	Additional Homework Problems	120		
6	Nondeterminism and NP-Completeness 1				
•	6.1	Characterizing NP	123		
	6.2	The Class P	124		
	6.3	Enumerations	126		
	6.4	NP-Completeness	128		
	6.5	The Cook–Levin Theorem	130		
	6.6	More NP-Complete Problems	136		
	0.0	6.6.1 The Diagonal Set Is NP-Complete	137		
		6.6.2 Some Natural NP-Complete Problems	138		

			Contents	xiii
	6.7	Additional Homework Problems		142
7	Rela	ative Computability		145
	7.1	NP-Hardness		147
	7.2	Search Problems		151
	7.3	The Structure of NP		153
		7.3.1 Composite Number and Graph Isomorphism .		158
		7.3.2 Reflection		161
	7.4	The Polynomial Hierarchy		162
	7.5	Complete Problems for Other Complexity Classes		170
		7.5.1 PSPACE		170
		7.5.2 Exponential Time		174
		7.5.3 Polynomial Time and Logarithmic Space		175
		7.5.4 A Note on Provably Intractable Problems		179
	7.6	Additional Homework Problems		179
References				181
Author Index				
Subject Index				191