DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

HANDBOOK OF COMPUTATIONAL GROUP THEORY

DEREK F.HOLT

BETTINA EICK EAMONN A.O'BRIEN

CHAPMAN & HALL/CRC

A CRC Press Company Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying.

Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

@ 2005 by Chapman & Hall/CRC Press

No claim to original U.S. Government works International Standard Book Number 1-58488-372-3 Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper

Contents

N	Notation and displayed procedures			xvi
1	A Hi	istorica	ll Review of Computational Group Theory	1
2	Bac	kgroun	d Material	9
	2.1	Funda	amentals	9
		2.1.1	Definitions	9
		2.1.2	Subgroups	11
		2.1.3	Cyclic and dihedral groups	12
		2.1.4	Generators	13
		2.1.5	Examples—permutation groups and matrix groups	13
		2.1.6	Normal subgroups and quotient groups	14
		2.1.7	Homomorphisms and the isomorphism theorems	15
	2.2	Group	actions	17
		2.2.1	Definition and examples	17
		2.2.2	Orbits and stabilizers	19
		2.2.3	Conjugacy, normalizers, and centralizers	20
		2.2.4	Sylow's theorems	21
		2.2.5	Transitivity and primitivity	22
	2.3	Series		26
		2.3.1	Simple and characteristically simple groups	26
		2.3.2	Series	27
		2.3.3	The derived series and solvable groups	27
		2.3.4	Central series and nilpotent groups	29
		2.3.5	The socle of a finite group	31
		2.3.6	The Frattini subgroup of a group	32
	2.4	Prese	ntations of groups	33
		2.4.1	Free groups	33
		2.4.2	Group presentations	36
		2.4.3	Presentations of group extensions	38
		2.4.4	Tietze transformations	40
	2.5	Prese	ntations of subgroups	41
		2.5.1	Subgroup presentations on Schreier generators	41
		2.5.2	Subgroup presentations on a general generating set	44
	2.6	Abelia	an group presentations	46

	2.7	Representation theory, modules, extensions, derivations, and		
		compl	ements	4 8
		2.7.1	The terminology of representation theory	49
		2.7.2	Semidirect products, complements, derivations, and	
			first cohomology groups	50
		2.7.3	Extensions of modules and the second cohomology	
			group	52
		2.7.4	The actions of automorphisms on cohomology groups	54
	2.8	Field (theory	56
		2.8.1	Field extensions and splitting fields	56
		2.8.2	Finite fields	58
		2.8.3	Conway polynomials	59
3	Rep	resenti	ng Groups on a Computer	61
	3.1	Repre	senting groups on computers	61
		3.1.1	The fundamental representation types	61
		3.1.2	Computational situations	6 2
		3.1.3	Straight-line programs	64
		3.1.4	Black-box groups	65
	3.2	The u	se of random methods in CGT	67
		3.2.1	Randomized algorithms	67
		3.2.2	Finding random elements of groups	69
	3.3	Some	structural calculations	72
		3.3.1	Powers and orders of elements	72
		3.3.2	Normal closure	73
		3.3.3	The commutator subgroup, derived series, and lower	
			central series	73
	3.4	Comp	uting with homomorphisms	74
		3.4.1	Defining and verifying group homomorphisms	74
		3.4.2	Desirable facilities	75
4	Com	putati	on in Finite Permutation Groups	77
	4.1	The ca	alculation of orbits and stabilizers	77
		4.1.1	Schreier vectors	79
	4.2	Testin	$\operatorname{g}\operatorname{for}\operatorname{Alt}(\Omega)\operatorname{and}\operatorname{Sym}(\Omega)$	81
	4.3	Findi	ng block systems	82
		4.3.1	Introduction	82
		4.3.2	The Atkinson algorithm	83
		4.3.3	Implementation of the class merging process	85
	4.4	Bases	and strong generating sets	87
		4.4.1	Definitions	87
		4.4.2	The Schreier-Sims algorithm	90
		4.4.3	Complexity and implementation issues	93
		4.4.4	Modifying the strong generating set—shallow Schreier	
			trees	95

		4.4.5	The random Schreier-Sims method	97	
		4.4.6	The solvable BSGS algorithm	9 8	
		4.4.7	Change of base	102	
	4.5	Homo	morphisms from permutation groups	105	
		4.5.1	The induced action on a union of orbits	105	
		4.5.2	The induced action on a block system	106	
		4.5.3	Homomorphisms between permutation groups	107	
	4.6	Backt	rack searches	108	
		4.6.1	Searching through the elements of a group	110	
		4.6.2	Pruning the tree	113	
		4.6.3	Searching for subgroups and coset representatives	114	
		4.6.4	Automorphism groups of combinatorial structures and	l	
			partitions	118	
		4.6.5	Normalizers and centralizers	121	
		4.6.6	Intersections of subgroups	124	
		4.6.7	Transversals and actions on cosets	126	
		4.6.8	Finding double coset representatives	131	
	4.7	Sylow	subgroups, <i>p</i> -cores, and the solvable radical	132	
		4.7.1	Reductions involving intransitivity and imprimitivity	133	
		4.7.2	Computing Sylow subgroups	134	
		4.7.3	A result on quotient groups of permutation groups	137	
		4.7.4	Computing the <i>p</i> -core	138	
		4.7.5	Computing the solvable radical	140	
		4.7.6	Nonabelian regular normal subgroups	141	
	4.8	Applic	cations	143	
		4.8.1	Card shuffling	144	
		4.8.2	Graphs, block designs, and error-correcting codes	145	
		4.8.3	Diameters of Cayley graphs	147	
		4.8.4	Processor interconnection networks	148	
5	Cose	oset Enumeration			
	5.1	The ba	asic procedure	150	
		5.1.1	Coset tables and their properties	151	
		5.1.2	Defining and scanning	152	
		5.1.3	Coincidences	156	
	5.2	Strate	egies for coset enumeration	162	
		5.2.1	The relator-based method	162	
		5.2.2	The coset table-based method	165	
		5.2.3	Compression and standardization	167	
		5.2.4	Recent developments and examples	168	
		5.2.5	Implementation issues	170	
		5.2.6	The use of coset enumeration in practice	171	
	5.3	Prese	ntations of subgroups	173	
		5.3.1	Computing a presentation on Schreier generators	173	
		5.3.2	Computing a presentation on the user generators	178	

		5.3.3	Simplifying presentations	184
	5.4	Findi	ng all subgroups up to a given index	188
		5.4.1	Coset tables for a group presentation	189
		5.4.2	Details of the procedure	190
		5.4.3	Variations and improvements	196
	5.5	Applic	cations	19 8
6	Pres	entatio	ons of Given Groups	199
	6.1	Findi	ng a presentation of a given group	199
	6.2	Findi	ng a presentation on a set of strong generators	205
		6.2.1	The known BSGS case	205
		6.2.2	The Todd-Coxeter-Schreier-Sims algorithm	207
	6.3	The S	ims 'Verify' algorithm	208
		6.3.1	The single-generator case	209
		6.3.2	The general case	213
		6.3.3	Examples	217
7	Rep	resenta	ation Theory, Cohomology, and Characters	219
	7.1	Comp	utation in finite fields	220
	7.2	Eleme	entary computational linear algebra	221
	7.3	Factor	rizing polynomials over finite fields	226
		7.3.1	Reduction to the squarefree case	228
		7.3.2	Reduction to constant-degree irreducibles	229
		7.3.3	The constant-degree case	229
	7.4	Testin	gKG-modules for irreducibility—the Meataxe	230
		7.4.1	The Meataxe algorithm	230
		7.4.2	Proof of correctness	234
		7.4.3	The Ivanyos-Lux extension	235
		7.4.4	Actions on submodules and quotient modules	235
		7.4.5	Applications	236
	7.5	Relate	ed computations	237
		7.5.1	Testing modules for absolute irreducibility	237
		7.5.2	Finding module homomorphisms	241
		7.5.3	Testing irreducible modules for isomorphism	244
		7.5.4	Application—invariant bilinear forms	245
		7.5.5	Finding all irreducible representations over a finite	
			field	246
	7.6	Cohon	nology	248
		7.6.1	Computing first cohomology groups	249
		7.6.2	Deciding whether an extension splits	253
		7.6.3	Computing second cohomology groups	254
	7.7	Comp	uting character tables	255
		7.7.1	The basic method	256
		7.7.2	Working modulo a prime	257
		7.7.3	Further improvements	260

	7.8	Struct	ural investigation of matrix groups	264
		7.8.1	Methods based on bases and strong generating sets	264
		7.8.2	Computing in large-degree matrix groups	268
8	Com	putatio	on with Polycyclic Groups	27 3
	8.1	Polycy	clic presentations	274
		8.1.1	Polycyclic sequences	274
		8.1.2	Polycyclic presentations and consistency	278
		8.1.3	The collection algorithm	280
		8.1.4	Changing the presentation	284
	8.2	Exam	ples of polycyclic groups	286
		8.2.1	Abelian, nilpotent, and supersolvable groups	286
		8.2.2	Infinite polycyclic groups and number fields	288
		8.2.3	Application—crystallographic groups	289
	8.3	Subgro	oups and membership testing	290
		8.3.1	Induced polycyclic sequences	291
		8.3.2	Canonical polycyclic sequences	296
	8.4	Factor	groups and homomorphisms	298
		8.4.1	Factor groups	298
		8.4.2	Homomorphisms	299
	8.5	Subgro	oup series	300
	8.6	Orbit-	stabilizer methods	302
	8.7	Compl	ements and extensions	304
		8.7.1	Complements and the first cohomology group	304
		8.7.2	Extensions and the second cohomology group	307
	8.8	Interse	ections, centralizers, and normalizers	311
		8.8.1	Intersections	311
		8.8.2	Centralizers	313
		8.8.3	Normalizers	314
		8.8.4	Conjugacy problems and conjugacy classes	316
	8.9	Autom	orphism groups	317
	8.10	The st	ructure of finite solvable groups	320
		8.10.1	Sylow and Hall subgroups	320
		8.10.2	Maximal subgroups	322
9	Com	puting	Quotients of Finitely Presented Groups	325
	9.1	Finite	quotients and automorphism groups of finite groups	326
		9.1.1	Description of the algorithm	326
		9.1.2	Performance issues	332
		9.1.3	Automorphism groups of finite groups	333
	9.2	Abelia	n quotients	335
		9.2.1	The linear algebra of a free abelian group	335
		9.2.2	Elementary row operations	336
		9.2.3	The Hermite normal form	337

		9.2.4 Elementary column matrices and the Smith norm	nal	
		form	341	
	9.3	Practical computation of the HNF and SNF	347	
		9.3.1 Modular techniques	347	
		9.3.2 The use of norms and row reduction techniques	349	
		9.3.3 Applications	352	
	9.4	<i>p</i> -quotients of finitely presented groups	353	
		9.4.1 Power-conjugate presentations	353	
		9.4.2 The <i>p</i> -quotient algorithm	355	
		9.4.3 Other quotient algorithms	364	
		9.4.4 Generating descriptions of <i>p</i> -groups	364	
		9.4.5 Testing finite <i>p</i> -groups for isomorphism	371	
		9.4.6 Automorphism groups of finite p-groups	371	
		9.4.7 Applications	372	
10	Adva	nced Computations in Finite Groups	375	
	10.1	Some useful subgroups	376	
		10.1.1 Definition of the subgroups	376	
		10.1.2 Computing the subgroups—initial reductions	377	
		10.1.3 The O'Nan-Scott theorem	378	
		10.1.4 Finding the socle factors—the primitive case	379	
	10.2	Computing composition and chief series	381	
		10.2.1 Refining abelian sections	381	
		10.2.2 Identifying the composition factors	382	
	10.3	Applications of the solvable radical method	383	
	10.4	Computing the subgroups of a finite group	385	
		10.4.1 Identifying the TF-factor	386	
		10.4.2 Lifting subgroups to the next layer	387	
	10.5	Application—enumerating finite unlabelled structures	39 0	
11	Libra	praries and Databases		
	11.1	Primitive permutation groups	394	
		11.1.1 Affine primitive permutation groups	395	
		11.1.2 Nonaffine primitive permutation groups	396	
	11.2	Transitive permutation groups	397	
		11.2.1 Summary of the method	397	
		11.2.2 Applications	399	
	11.3	Perfect groups	400	
	11.4	The small groups library	402	
		11.4.1 The Frattini extension method	404	
		11.4.2 A random isomorphism test	405	
	11.5	Crystallographic groups	407	
	11.6	The "ATLAS of Finite Groups"	409	

12	Rew	riting Systems and the Knuth- Bendix Completion	
	Proc	ess	411
	12.1	Monoid presentations	412
		12.1.1 Monoids and semigroups	412
		12.1.2 Free monoids and monoid presentations	415
	12.2	Rewriting systems	417
	12.3	Rewriting systems in monoids and groups	423
	12.4	Rewriting systems for polycyclic groups	426
	12.5	Verifying nilpotency	429
	12.6	Applications	431
13	Finit	te State Automata and Automatic Groups	433
	13.1	Finite state automata	434
		13.1.1 Definitions and examples	434
		13.1.2 Enumerating and counting the language of a dfa	437
		13.1.3 The use of fsa in rewriting systems	439
		13.1.4 Word-acceptors	441
		13.1.5 2-variable fsa	442
		13.1.6 Operations on finite state automata	442
		13.1.6.1 Making an fsa deterministic	443
		13.1.6.2 Minimizing an fsa	444
		13.1.6.3 Testing for language equality	446
		13.1.6.4 Negation, union, and intersection	447
		13.1.6.5 Concatenation and star	447
		13.1.7 Existential quantification	448
	13.2	Automatic groups	451
		13.2.1 Definitions, examples, and background	451
		13.2.2 Word-differences and word-difference automata	453
	13.3	The algorithm to compute the shortlex automatic structures	456
		13.3.1 Step 1	457
		13.3.2 Step 2 and word reduction	459
		13.3.3 Step 3	460
		13.3.4 Step 4	462
		13.3.5 Step 5	464
		13.3.6 Comments on the implementation and examples	466
	13.4	Related algorithms	468
	13.5	Applications	469

References

471