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Introduction 

During the French Revolution, the writer of a project oflaw on public instruction com
plained: "Le defaut ou la disette de bons ouvrages elementaires a ete,jusqu'a present, 
un des plus grands obstacles qui s'opposaient au perfectionnement de l'instruction. 
La raison de cette disette, c'est que jusqu'a present les savants d'un merite eminent 
ont, presque toujours,pre/ere la gloire d'e/ever l'Mifice de la science a la peine d'en 
eclairer l'entree. l " Our main motivation here is precisely to "light the entrance" of 
the monument Convex Analysis and Minimization Algorithms. This is therefore not 
a reference book, to be kept on the shelf by an expert who already knows the build
ing and can find his way through it; it is rather a book for the purpose of learning 
and teaching. We call above all on the intuition of the reader, and our approach is 
very gradual: several developments are made first in a simplified context, and then 
repeated in subsequent chapters at a more sophisticated level. Nevertheless, we keep 
constantly in mind the minimization problem suggested by A. Einstein: "Everything 
should be made as simple as possible, but not simpler". Indeed, the content is by no 
means elementary, and will be hard for a reader not possessing a firm mastery of basic 
mathematical skill. 

As suggested by the title, two distinct parts are involved. One, convex analysis, 
can be considered as an academic discipline, of a high pedagogical content, and is 
potentially useful to many. Minimization algorithms, on the other hand, form a much 
narrower subject, definitely concerning applications of mathematics, and to some 
extent the exclusive domain of a few specialists. Besides, we restrict ourselves to what 
is called nonsmooth optimization, and even more specifically to the so-called bundle 
algorithms. These form an important application of convex analysis, and here lies an 
incentive to write the present bi-disciplinary book. The theory is thus illustrated with 
a typical field of applications, and in return, the necessary mathematical background 
is thus accessible to a reader more interested by the algorithmic part. This has some 
consequences for the expository style: for the theoretical part, the pedagogy is based 
on geometric visualization of the mathematical concepts; as for minimization, only 
a vague knowledge of computers and numerical algorithms is assumed of the reader, 
which implies a rather pedestrian pace here and there. 

I "The lack or scarcity of good, elementary books has been, until now, one of the greatest obstacles 
in the way of better instruction. The reason for this scarcity is that, until now, scholars of great merit 
have almost always preferred the glory of constructing the monument of science over the effort of 
lighting its entrance." D. Guedj: La Revolution des Savants, Decouvertes, Gallimard Sciences (\988) 
130- 13\. 



XVI Introduction 

This dichotomous aspect emerges already in the first two chapters, which make 
a quick guided tour of their respective fields. Many a reader might be content with 
Chap. I, in which most concepts are exposed (extended-valued functions, subdifferen
tiability, conjugacy) in the simplest setting of univariate functions. As for Chap. II, it 
can be skipped by a reader familiar with classical minimization algorithms: its aim is 
to outline the general principles which, in our opinion, nonsmooth optimization must 
start from, and such a reader knows these principles. 

Chapters III to VI are the instructional backbone of the work. Entirely devoted 
to convex analysis, they contain the basic theory, and geometric intuition is involved 
more than anywhere else. Chapter VII does the same thing for basic optimization 
theory. 

Finally the last chapter of the present first part (Chap. VIII) lays down the neces
sary theory to develop algorithms minimizing convex functions. This chapter follows 
the general principles of Chap. II and serves as an illustration of basic convex anal
ysis. On the other hand, its material is essential for a comprehension of the actual 
algorithms for convex (nonsmooth) optimization, to be studied in the second part. 

Each chapter is presented as a "lesson", in the sense of our old masters, treat
ing of a given subject in its entirety. We could not completely avoid references to 
other chapters; but for many of them, the motivation is to suggest an intellectual link 
between apparently independent concepts, rather than a technical need for previous 
results. More than a tree, our approach evokes a spiral, made up ofloosely interrelated 
elements. 

Formally, many sections are written in smaller characters; these are not reserved 
to advanced material. Actually, these sections often help the reader, with illustrative 
examples, side remarks helping to understand a delicate point, or preparing some 
material to come in a subsequent chapter. Roughly speaking, they can be compared to 
footnotes, used to avoid interrupting the flow of the development; it can be helpful to 
skip them during a deeper reading, with pencil and paper. There are no formally stated 
exercises; but these sections in smaller characters, precisely, can often be considered 
as such exercises, useful to keep the reader awake. 

The numbering restarts at I in each chapter, and chapter numbers are dropped in 
a cross-reference to an equation or theorem from within the same chapter. A reference 
of the type A.n refers to Appendix A, which recalls some theoretical background. 

We thank all those, including the referees, who contributed the improvement of 
the manuscript by their remarks, criticisms or suggestions. Mistakes? there still must 
be some, of course: we just hope that they are no longer capital, and that readers will 
be able to detect and correct them painlessly. 

Among those who helped us most, we would like to thank particularly Th. Dussaut, 
1.e. Gilbert, K.e. Kiwiel, S. Maurin, 1.-1. Moreau, AS. Nemirovskij, M.-R. Philippe, 
C.A Sagastizeibal, A Seeger, S. Shiraishi, M. Valadier and, last but not least, the 
editorial and production staff of Springer-Verlag, who did a remarkably professional 
job. The manuscript was written on an Apple Mac+, using Microsoft Word, and 
CricketDraw for the pictures. It was converted into TeX with the help of "rtf2TeX", a 
program written by R. Lupton at Princeton University. The final typeset version was 
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produced using the MathTime fonts by M. Spivak, distributed by the TeXplorators 
Corp. The role of OzTeX was decisive in this, and we gratefully acknowledge the 
technical help of W Carlip and A. Trevorrow. Thanks and apologies are also due to 
Therese, Lydie, Sebastien, Aur61ien, who had to endure our bad mood during seven 
years of wrestling with mathematics, computers and the English language. 

Toulouse, April 1993 I-B. Hiriart-Urruty, C. LemarechaL 

Note about this revised printing. Most corrections are minor; they concern mis
prints and other typographical details, or also informal developments. Besides, some 
bibliographical items have been updated and the index has been enriched. 

Paris, January 1996 


