Problem Books in Mathematics

Edited by P. R. Halmos

Problem Books in Mathematics

Series Editor: P.R. Halmos

Unsolved Problems in Intuitive Mathematics, Volume I: Unsolved Problems in Number Theory by *Richard K. Guy*

Theorems and Problems in Functional Analysis by A.A. Kirillov and A.D. Gvishiani

Problems in Analysis by *Bernard Gelbaum*

A Problem Seminar by *Donald J. Newman*

Problem-Solving Through Problems by *Loren C. Larson*

Demography Through Problems by *N. Keyfitz* and *J.A. Beekman*

Problem Book for First Year Calculus by *George W. Bluman*

Exercises in Integration by *Claude George*

Exercises in Number Theory by *D.P. Parent*

Problems in Geometry by Marcel Berger, Pierre Pansu, Jean-Pic Berry, and Xavier Saint-Raymond

Algebraic Logic by S.G. Gindikin

An Outline of Set Theory by James M. Henle

James M. Henle

An Outline of Set Theory

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo

James M. Henle Department of Mathematics Smith College Northampton, MA 01060 U.S.A.

Series Editor

Paul R. Halmos Department of Mathematics University of Santa Clara Santa Clara, CA 95053 U.S.A.

AMS Subject Classifications: 03-01, 03E20

Library of Congress Cataloging in Publication Data Henle, James M. An outline of set theory. (Problem books in mathematics) Bibliography: p. Includes index. 1. Set theory. 2. Logic, Symbolic and mathematical. I. Title. II. Series. QA248.H43 1986 511.3'22 86-13943

© 1986 by Springer-Verlag New York Inc.

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

987654321

Preface

This book is designed for use in a one semester problem-oriented course in undergraduate set theory. The combination of level and format is somewhat unusual and deserves an explanation.

Normally, problem courses are offered to graduate students or selected undergraduates. I have found, however, that the experience is equally valuable to ordinary mathematics majors. I use a recent modification of R. L. Moore's famous method developed in recent years by D. W. Cohen [1]. Briefly, in this new approach, projects are assigned to groups of students each week. With all the necessary assistance from the instructor, the groups complete their projects, carefully write a short paper for their classmates, and then, in the single weekly class meeting, lecture on their results. While the emphasis is on the student, the instructor is available at every stage to assure success in the research, to explain and critique mathematical prose, and to coach the groups in clear mathematical presentation.

The subject matter of set theory is peculiarly appropriate to this style of course. For much of the book the objects of study are familiar and while the theorems are significant and often deep, it is the methods and ideas that are most important. The necessity of reasoning about numbers and sets forces students to come to grips with the nature of proof, logic, and mathematics. In their research they experience the same dilemmas and uncertainties that faced the pioneers. They will, for example, discover in some chapters that deeper results in earlier chapters are necessary before work can proceed. Students do not always solve the problems completely on their own. They do, however, learn what proofs are and how to organize and write them, and while lectures on this material might easily bore, students find the experience of doing it themselves exciting and rewarding. It is familiar enough to be reassuring and different enough to be challenging.

More set theory is included here than one can reasonably use. I cover roughly 35 to 40 projects in a semester. The last three chapters are independent of each other and can be used selectively or omitted. Sections of other chapters may also be skipped or summarized, particularly the last few in Chapter 7.

I am indebted first of all to David Cohen, for the example of his outstanding teaching, and to my students for their intelligence and unflagging good humor. I only hope that my confidence in this approach is not based entirely on a teacher who might succeed with *any* method, and students who might prevail under *any* regimen. I greatly appreciate the support of Smith College and the encouragement of its most collegial mathematics department. Thanks are also due to Marcia Groszek for the Tennyson quotation, and special thanks to Carlos Di Prisco for his very timely suggestions and advice.

References

[1] D. W. Cohen, "A Modified Moore Method for Teaching Undergraduate Mathematics," Am. Math. Monthly 89, no. 7, 1982.

J. M. HENLE

Contents

Preface

Int	roduction	1
Par	rt One Projects	
1.	Logic and Set Theory	7
2.	The Natural Numbers	15
3.	The Integers	21
4.	The Rationals	23
5.	The Real Numbers	25
6.	The Ordinals	27
7.	The Cardinals	33
8.	The Universe	37
9.	Choice and Infinitesimals	41
10.	Goodstein's Theorem	45
Par	rt Two Suggestions	
1.	Logic and Set Theory	51
2.	The Natural Numbers	55
3.	The Integers	57
4.	The Rationals	59
5.	The Real Numbers	63
6.	The Ordinals	67
7.	The Cardinals	71

v

Contents

8.	The Universe	81
9.	Choice and Infinitesimals	85
10.	Goodstein's Theorem	91

Part Three Solutions

1.	Logic and Set Theory	97
2.	The Natural Numbers	101
3.	The Integers	105
4.	The Rationals	109
5.	The Real Numbers	115
6.	The Ordinals	119
7.	The Cardinals	123
8.	The Universe	129
9.	Choice and Infinitesimals	133
10.	Goodstein's Theorem	137
Ind	ex	141

Index

viii