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Preface 

This book is based on one-semester courses given at Harvard in 1984, at Brown in 
1985, and at Harvard in 1988. It is intended to be, as the title suggests, a first 
introduction to the subject. Even so, a few words are in order about the purposes 
of the book. 

Algebraic geometry has developed tremendously over the last century. During 
the 19th century, the subject was practiced on a relatively concrete, down-to-earth 
level; the main objects of study were projective varieties, and the techniques for the 
most part were grounded in geometric constructions. This approach flourished 
during the middle of the century and reached its culmination in the work of the 
Italian school around the end of the 19th and the beginning of the 20th centuries. 
Ultimately, the subject was pushed beyond the limits of its foundations: by the end 
of its period the Italian school had progressed to the point where the language and 
techniques of the subject could no longer serve to express or carry out the ideas of 
its best practitioners. 

This was more than amply remedied in the course of several developments 
beginning early in this century. To begin with, there was the pioneering work of 
Zariski who, aided by the German school of abstract algebraists, succeeded in 
putting the subject on a firm algebraic foundation. Around the same time, Wei! 
introduced the notion of abstract algebraic variety, in effect redefining the basic 
objects studied in the subject. Then in the 1950s came Serre's work, introducing the 
fundamental tool of sheaf theory. Finally (for now), in the 1960s, Grothendieck 
(aided and abetted by Artin, Mumford, and many others) introduced the concept 
of the scheme. This, more than anything else, transformed the subject, putting it on 
a radically new footing. As a result of these various developments much of the more 
advanced work ofthe Italian school could be put on a solid foundation and carried 
further; this has been happening over the last two decades simultaneously with the 
advent of new ideas made possible by the modern theory. 
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All this means that people studying algebraic geometry today are in the position 
of being given tools of remarkable power. At the same time, didactically it creates 
a dilemma: what is the best way to go about learning the subject? If your goal is 
simply to see what algebraic geometry is about-to get a sense of the basic objects 
considered, the questions asked about them and the sort of answers one can 
obtain-you might not want to start off with the more technical side of the subject. 
If, on the other hand, your ultimate goal is to work in the field of algebraic geometry 
it might seem that the best thing to do is to introduce the modern approach early 
on and develop the whole subject in these terms. Even in this case, though, you 
might be better motivated to learn the language of schemes, and better able to 
appreciate the insights offered by it, if you had some acquaintance with elementary 
algebraic geometry. 

In the end, it is the subject itself that decided the issue for me. Classical algebraic 
geometry is simply a glorious subject, one with a beautifully intricate structure 
and yet a tremendous wealth of examples. It is full of enticing and easily posed 
problems, ranging from the tractable to the still unsolved. It is, in short, ajoy both 
to teach and to learn. For all these reasons, it seemed to me that the best way to 
approach the subject is to spend some time introducing elementary algebraic 
geometry before going on to the modern theory. This book represents my attempt 
at such an introduction. 

This motivation underlies many of the choices made in the contents of the book. 
For one thing, given that those who want to go on in algebraic geometry will be 
relearning the foundations in the modern language there is no point in introducing 
at this stage more than an absolute minimum of technical machinery. Likewise, I 
have for the most part avoided topics that I felt could be better dealt with from a 
more advanced perspective, focussing instead on those that to my mind are nearly 
as well understood classically as they are in modern language. (This is not absolute, 
of course; the reader who is familiar with the theory of schemes will find lots of 
places where we would all be much happier if I could just say the words "scheme­
theoretic intersection" or "flat family".) 

This decision as to content and level in turn influences a number of other 
questions of organization and style. For example, it seemed a good idea for the 
present purposes to stress examples throughout, with the theory developed concur­
rently as needed. Thus, Part I is concerned with introducing basic varieties and 
constructions; many fundamental notions such as dimension and degree are not 
formally defined until Part II. Likewise, there are a number of unproved assertions, 
theorems whose statements I thought might be illuminating, but whose proofs are 
beyond the scope of the techniques introduced here. Finally, I have tried to main­
tain an informal style throughout. 
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Using This Book 

There is not much to say here, but I'll make a couple of obvious points. 
First of all, a quick glance at the book will show that the logical skeleton 

of this book occupies relatively little of its volume: most of the bulk is taken up by 
examples and exercises. Most of these can be omitted, if they are not of interest, and 
gone back to later if desired. Indeed, while I clearly feel that these sorts of examples 
represent a good way to become familiar with the subject, I expect that only 
someone who was truly gluttonous, masochistic, or compulsive would read every 
single one on the first go-round. By way of example, one possible abbreviated tour 
of the book might omit (hyphens without numbers following mean "to end of 
lecture") 1.22-,2.27-,3.16-,4.10-,5.11-,6.8-11,7.19-21, 7.25-, 8.9-13, 8.32-39, 
9.15-20,10.12-17,10.23-,11.40-,12.11-,13.7-,15.7-21, 16.9-11, 16.21-, 17.4-15, 
19.11-,20.4-6,20.9-13 and all of 21. 

By the same token, I would encourage the reader to jump around in the text. As 
noted, some basic topics are relegated to later in the book, but there is no reason 
not to go ahead and look at these lectures if you're curious. Likewise, most of the 
examples are dealt with several times: they are introduced early and reexamined in 
the light of each new development. If you would rather, you could use the index 
and follow each one through. 

Lastly, a word about prerequisites (and post-requisites). I have tried to keep the 
former to a minimum: a reader should be able to get by with just some linear and 
multilinear algebra and a basic background in abstract algebra (definitions and 
basic properties of groups, rings, fields, etc.), especially with a copy of a user-friendly 
commutative algebra book such as Atiyah and MacDonald's [AM] or Eisenbud's 
[E] at hand. 

At the other end, what to do if, after reading this book, you would like to 
learn some algebraic geometry? The next step would be to learn some sheaf theory, 
sheaf cohomology, and scheme theory (the latter two not necessarily in that order). 
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For sheaf theory in the context of algebraic geometry, Serre's paper [S] is the basic 
source. For the theory of schemes, Hartshorne's [H] classic book stands out as the 
canonical reference; as an introduction to the subject there is also Mumford's [M!] 
red book and the book by Eisenbud and Harris [EH]. Alternatively, for a discus­
sion of some advanced topics in the setting of complex manifolds rather than 
schemes, see [GH]. 
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