Cambridge University Press 978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action Mor Harchol-Balter Table of Contents <u>More information</u>

Contents

Preface		xvii
Acknowl	edgments	xxiii
	I Introduction to Queueing	
1 Moti	ivating Examples of the Power of Analytical Modeling	3
1.1	What Is Queueing Theory?	3
1.2	Examples of the Power of Queueing Theory	5
2 Que	ueing Theory Terminology	13
2.1	Where We Are Heading	13
2.2	The Single-Server Network	13
2.3	Classification of Queueing Networks	16
2.4	Open Networks	16
2.5	More Metrics: Throughput and Utilization	17
2.6	Closed Networks	20
	2.6.1 Interactive (Terminal-Driven) Systems	21
	2.6.2 Batch Systems	22
	2.6.3 Throughput in a Closed System	23
2.7	1	24
• •	2.7.1 A Question on Modeling	25
2.8	e	25
2.9	Exercises	26
	II Necessary Probability Background	
3 Prob	pability Review	31
3.1	Sample Space and Events	31
3.2	Probability Defined on Events	32
3.3	Conditional Probabilities on Events	33
3.4	Independent Events and Conditionally Independent Events	34
3.5	Law of Total Probability	35
3.6	Bayes Law	36
3.7	Discrete versus Continuous Random Variables	37
3.8	Probabilities and Densities	38
	3.8.1 Discrete: Probability Mass Function	38
•	3.8.2 Continuous: Probability Density Function	41
3.9	1	44
3.10	Joint Probabilities and Independence	47

viii

Cambridge University Press
78-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Aor Harchol-Balter
Cable of Contents
Aore information

CONTENTS

	3.11	Conditi	onal Probabilities and Expectations	49			
	3.12	-					
	3.13	Lineari	54				
	3.14	Normal	Distribution	57			
		3.14.1	Linear Transformation Property	58			
		3.14.2	Central Limit Theorem	61			
	3.15	Sum of	a Random Number of Random Variables	62			
	3.16	Exercis	es	64			
4	Gene	rating F	Random Variables for Simulation	70			
	4.1	Inverse	-Transform Method	70			
		4.1.1	The Continuous Case	70			
		4.1.2	The Discrete Case	72			
	4.2	Accept	-Reject Method	72			
		4.2.1	Discrete Case	73			
		4.2.2	Continuous Case	75			
		4.2.3	Some Harder Problems	77			
	4.3	Reading	78				
	4.4	1.4 Exercises					
5	Samp	ole Path	s, Convergence, and Averages	79			
	5.1	Conver	gence	79			
	5.2	Strong	and Weak Laws of Large Numbers	83			
	5.3	Time A	verage versus Ensemble Average	84			
		5.3.1	Motivation	85			
			Definition	86			
			Interpretation	86			
		5.3.4	Equivalence	88			
			Simulation	90			
			Average Time in System	90			
	5.4	Related	Readings	91 91			
	5.5	Exercise					

III The Predictive Power of Simple Operational Laws: "What-If" Questions and Answers

6 Littl	e's Law and Other Operational Laws	95
6.1	Little's Law for Open Systems	95
6.2	Intuitions	96
6.3	Little's Law for Closed Systems	96
6.4	Proof of Little's Law for Open Systems	97
	6.4.1 Statement via Time Averages	97
	6.4.2 Proof	98
	6.4.3 Corollaries	100
6.5	Proof of Little's Law for Closed Systems	101
	6.5.1 Statement via Time Averages	101
	6.5.2 Proof	102
6.6	Generalized Little's Law	102

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Table of Contents
More information

	CONTENTS	ix		
6.7	Examples Applying Little's Law	103		
6.8	More Operational Laws: The Forced Flow Law	105		
6.9	Combining Operational Laws	100		
6.10	Device Demands	110		
6.11	Readings and Further Topics Related to Little's Law	111		
6.12	Exercises	111		
	ification Analysis: "What-If" for Closed Systems	114		
7.1	Review	114		
7.2	Asymptotic Bounds for Closed Systems	115		
7.3	Modification Analysis for Closed Systems	118		
7.4	More Modification Analysis Examples	119		
7.5	Comparison of Closed and Open Networks	122		
7.6	Readings	122		
7.7 Exercises				
	IV From Markov Chains to Simple Queues			
8 Disci	rete-Time Markov Chains	129		
8.1 Discrete-Time versus Continuous-Time Markov Chains		130		
8.1 Discrete-Time versus Continuous-Time Markov Chains8.2 Definition of a DTMC				
8.3 Examples of Finite-State DTMCs				
0.0	8.3.1 Repair Facility Problem	131 131		
	8.3.2 Umbrella Problem	132		
	8.3.3 Program Analysis Problem	132		
8.4	Powers of P : <i>n</i> -Step Transition Probabilities	133		
8.5	Stationary Equations	135		
8.6	The Stationary Distribution Equals the Limiting Distribution	136		
8.7	Examples of Solving Stationary Equations	138		
	8.7.1 Repair Facility Problem with Cost	138		
	872 Umbrella Problem	130		

	8.7.1 Repair Facility Problem with Cost	138			
	8.7.2 Umbrella Problem	139			
8.8	Infinite-State DTMCs	139			
8.9	Infinite-State Stationarity Result				
8.10	Solving Stationary Equations in Infinite-State DTMCs	142			
8.11	Exercises	145			
9 Ergo	148				
9.1	Ergodicity Questions	148			
9.2	Finite-State DTMCs	149			
	9.2.1 Existence of the Limiting Distribution	149			
	9.2.2 Mean Time between Visits to a State	153			
	9.2.3 Time Averages	155			
9.3	9.3 Infinite-State Markov Chains				
	9.3.1 Recurrent versus Transient	156			
	9.3.2 Infinite Random Walk Example	160			
	9.3.3 Positive Recurrent versus Null Recurrent	162			
9.4	Ergodic Theorem of Markov Chains	164			

X

ambridge University Press	
78-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action	1
for Harchol-Balter	
able of Contents	
Iore information	

CONTENTS

	9.5	Time Averages 16					
	9.6	Limiting Probabilities Interpreted as Rates					
	9.7	Time-Reversi	170				
	9.8	When Chains Are Periodic or Not Irreducible					
		9.8.1 Periodic Chains					
		9.8.2 Chai	ns that Are Not Irreducible	177			
	9.9	Conclusion		177			
	9.10	Proof of Ergo	dic Theorem of Markov Chains*	178			
	9.11	Exercises		183			
10	Real-	World Exam	ples: Google, Aloha, and Harder Chains*	190			
	10.1	Google's Page	eRank Algorithm	190			
		10.1.1 Goog	gle's DTMC Algorithm	190			
		10.1.2 Prob	lems with Real Web Graphs	192			
		10.1.3 Goog	gle's Solution to Dead Ends and Spider Traps	194			
		10.1.4 Evalu	ation of the PageRank Algorithm	195			
		10.1.5 Pract	ical Implementation Considerations	195			
	10.2	Aloha Protoco	5	195			
		10.2.1 The s	Slotted Aloha Protocol	196			
			Aloha Markov Chain	196			
		10.2.3 Prop	erties of the Aloha Markov Chain	198			
		-	oving the Aloha Protocol	199			
	10.3	Generating Fu	inctions for Harder Markov Chains	200			
		10.3.1 The	z-Transform	201			
			ng the Chain	201			
	10.4	Readings and	Summary	203 204			
	10.5						
11	Exponential Distribution and the Poisson Process			206			
	11.1	1					
	11.2	Memoryless Property of the Exponential					
	11.3	Relating Expo	209				
	11.4	1 1					
	11.5		ed Poisson Process	213 218			
	11.6	6 Merging Independent Poisson Processes					
	11.7	Poisson Splitt	ing	218			
	11.8	Uniformity		221			
	11.9	Exercises		222			
12	Trans	ition to Cont	inuous-Time Markov Chains	225			
	12.1	Defining CTM		225			
	12.2	Solving CTM		229			
	12.3		n and Interpretation	232			
			preting the Balance Equations for the CTMC	234			
			mary Theorem for CTMCs	234			
	12.4	Exercises		234			

Cambridge University Press	
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Act	ion
Mor Harchol-Balter	
Table of Contents	
More information	

	CONTENTS	xi
13 M	/M/1 and PASTA	236
13	.1 The M/M/1 Queue	236
13	.2 Examples Using an M/M/1 Queue	239
	.3 PASTA	242
	.4 Further Reading	245
13	.5 Exercises	245
V	Server Farms and Networks: Multi-server, Multi-queue Syst	ems
14 Se	erver Farms: M/M/k and M/M/k/k	253
14	.1 Time-Reversibility for CTMCs	253
14	.2 M/M/k/k Loss System	255
14	.3 M/M/k	258
	.4 Comparison of Three Server Organizations	263
14	.5 Readings	264
14	.6 Exercises	264
15 C	apacity Provisioning for Server Farms	269
15	.1 What Does Load Really Mean in an M/M/k?	269
15		271
	15.2.1 Analysis of the $M/M/\infty$	271
	15.2.2 A First Cut at a Capacity Provisioning Rule for the M/M/k	272
	.3 Square-Root Staffing	274
	.4 Readings	276
15		276
16 T i	me-Reversibility and Burke's Theorem	282
16	.1 More Examples of Finite-State CTMCs	282
	16.1.1 Networks with Finite Buffer Space	282
	16.1.2 Batch System with M/M/2 I/O	284
16		285
	.3 Burke's Theorem	288
	.4 An Alternative (Partial) Proof of Burke's Theorem	290
	.5 Application: Tandem Servers	291
16		293
16	6	294
16		294
	etworks of Queues and Jackson Product Form	297
17		297
	.2 The Arrival Process into Each Server	298
	.3 Solving the Jackson Network	300
	.4 The Local Balance Approach	301
	.5 Readings	306
17		306
	assed Network of Queues	311
18		311
18	.2 Motivation for Classed Networks	311

xii

Cambridge University Press	
78-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action	n
Mor Harchol-Balter	
Table of Contents	
More information	

CONTENTS

	18.3	Notatio	314	
	18.4	A Singl	315	
	18.5	8.5 Product Form Theorems		
	18.6	Examp	322	
		18.6.1	Connection-Oriented ATM Network Example	322
		18.6.2	Distribution of Job Classes Example	325
		18.6.3	CPU-Bound and I/O-Bound Jobs Example	326
	18.7	Reading	gs	329
	18.8	Exercis	329	
19	Closed Networks of Queues		331	
	19.1	Motivation Product-Form Solution		331
	19.2			333
		19.2.1	Local Balance Equations for Closed Networks	333
		19.2.2	Example of Deriving Limiting Probabilities	335
	19.3	Mean V	Value Analysis (MVA)	337
		19.3.1	The Arrival Theorem	338
		19.3.2	Iterative Derivation of Mean Response Time	340
		19.3.3	An MVA Example	341
	19.4	Reading	gs	343
	19.5	Exercis	es	343

VI Real-World Workloads: High Variability and Heavy Tails

20	Tales	Tales of Tails: A Case Study of Real-World Workloads		
	20.1	Grad S	chool Tales Process Migration	349
	20.2	UNIX I	Process Lifetime Measurements	350
	20.3	Propert	ties of the Pareto Distribution	352
	20.4	The Bounded Pareto Distribution		353
	20.5	Heavy Tails		354
	20.6	The Be	354	
	20.7	Pareto 1	355	
	20.8	Exercis	Ses	357
21	Phase	e-Type l	Distributions and Matrix-Analytic Methods	359
	21.1	Represe	enting General Distributions by Exponentials	359
	21.2	Markov	v Chain Modeling of PH Workloads	364
	21.3	The Matrix-Analytic Method		366
	21.4	Analys	367	
		21.4.1	High-Level Ideas	367
		21.4.2	The Generator Matrix, Q	368
		21.4.3	Solving for R	370
		21.4.4	Finding $\vec{\pi}_0$	371
		21.4.5	Performance Metrics	372
	21.5	More Complex Chains		372
	21.6	Readin	gs and Further Remarks	376
	21.7	Exercis	Ses	376

Cambridge University Press 978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action Mor Harchol-Balter Table of Contents <u>More information</u>

	CONTENTS	xiii
22 Netw	vorks with Time-Sharing (PS) Servers (BCMP)	380
22.1	Review of Product-Form Networks	380
22.2	BCMP Result	380
	22.2.1 Networks with FCFS Servers	381
	22.2.2 Networks with PS Servers	382
22.3	M/M/1/PS	384
22.4	M/Cox/1/PS	385
22.5	Tandem Network of M/G/1/PS Servers	391
22.6	Network of PS Servers with Probabilistic Routing	393
22.7	Readings	394
22.8	Exercises	394
23 The	M/G/1 Queue and the Inspection Paradox	395
23.1	The Inspection Paradox	395
23.2	The M/G/1 Queue and Its Analysis	396
23.3	Renewal-Reward Theory	399
23.4	Applying Renewal-Reward to Get Expected Excess	400
23.5	Back to the Inspection Paradox	402
23.6	Back to the M/G/1 Queue	403
23.7	Exercises	405
24 Task	Assignment Policies for Server Farms	408
24.1	Task Assignment for FCFS Server Farms	410
24.2	Task Assignment for PS Server Farms	419
24.3	Optimal Server Farm Design	424
24.4	Readings and Further Follow-Up	428
24.5	Exercises	430
25 Trar	nsform Analysis	433
25.1	Definitions of Transforms and Some Examples	433
25.2	Getting Moments from Transforms: Peeling the Onion	436
25.3	Linearity of Transforms	439
25.4	Conditioning	441
25.5	Distribution of Response Time in an M/M/1	443
25.6	Combining Laplace and z-Transforms	444
25.7	More Results on Transforms	445
25.8	Readings	446
25.9	Exercises	446
26 M/G	/1 Transform Analysis	450
26.1	The z-Transform of the Number in System	450
26.2	The Laplace Transform of Time in System	454
26.3	Readings	456
26.4	Exercises	456
27 Pow	er Optimization Application	457
27.1	The Power Optimization Problem	457
27.2	Busy Period Analysis of M/G/1	459
27.3	M/G/1 with Setup Cost	462

Cambridge University Press 978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action Mor Harchol-Balter Table of Contents <u>More information</u>

xiv	CONTENTS	
27.4	Comparing ON/IDLE versus ON/OFF	46
27.5		46
27.6	Exercises	46
	VII Smart Scheduling in the M/G/1	
28 Perf	ormance Metrics	47
28.1	Traditional Metrics	47
28.2	Commonly Used Metrics for Single Queues	47
28.3	Today's Trendy Metrics	47
28.4	Starvation/Fairness Metrics	47
28.5	Deriving Performance Metrics	47
28.6	Readings	4′
29 Sche	eduling: Non-Preemptive, Non-Size-Based Policies	4'
29.1	FCFS, LCFS, and RANDOM	4′
29.2	Readings	43
29.3	Exercises	4
30 Sche	eduling: Preemptive, Non-Size-Based Policies	4
30.1		43
	30.1.1 Motivation behind PS	4
	30.1.2 Ages of Jobs in the M/G/1/PS System	4
	30.1.3 Response Time as a Function of Job Size	4
	30.1.4 Intuition for PS Results	4
	30.1.5 Implications of PS Results for Understanding FCFS	43
30.2	Preemptive-LCFS	43
30.3	FB Scheduling	49
30.4	Readings	4
30.5	Exercises	4
31 Sche	eduling: Non-Preemptive, Size-Based Policies	4
31.1	Priority Queueing	4
31.2	Non-Preemptive Priority	50
31.3	Shortest-Job-First (SJF)	50
31.4	The Problem with Non-Preemptive Policies	50
31.5	Exercises	5
32 Sche	eduling: Preemptive, Size-Based Policies	5
32.1	Motivation	50
32.2	Preemptive Priority Queueing	50
32.3	Preemptive-Shortest-Job-First (PSJF)	5
32.4	Transform Analysis of PSJF	5
32.5	Exercises	5
33 Sche	eduling: SRPT and Fairness	5
33.1	Shortest-Remaining-Processing-Time (SRPT)	5
33.2	Precise Derivation of SRPT Waiting Time*	52

Cambridge University Press	
78-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action	n
Mor Harchol-Balter	
Table of Contents	
More information	

	CONTENTS	XV
33.3	Comparisons with Other Policies	523
	33.3.1 Comparison with PSJF	523
	33.3.2 SRPT versus FB	523
	33.3.3 Comparison of All Scheduling Policies	524
33.4	Fairness of SRPT	525
33.5	Readings	529
Bibliography Index		531 541