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Preface 

"In truth, it is not knowledge, but learning, not possessing, 
but production, not being there, but travelling there, which 
provides the greatest pleasure. When I have completely 
understood something, then I turn away and move on into 
the dark; indeed, so curious is the insatiable man, that 
when he has completed one house, rather than living in it 
peacefully, he starts to build another." 

Letter from C. F. Gauss to W. Bolyai on Sept. 2, 1808 

This textbook adds a book devoted to applied mathematics to the series 
"Grundwissen Mathematik." Our goals, like those of the other books in the 
series, are to explain connections and common viewpoints between various 
mathematical areas, to emphasize the motivation for studying certain prob
lem areas, and to present the historical development of our subject. 

Our aim in this book is to discuss some of the central problems which 
arise in applications of mathematics, to develop constructive methods for the 
numerical solution of these problems, and to study the associated questions 
of accuracy. In doing so, we also present some theoretical results needed for 
our development, especially when they involve material which is beyond the 
scope of the usual beginning courses in calculus and linear algebra. This book 
is based on lectures given over many years at the Universities of Freiburg, 
Munich, Berlin and Augsburg. Our intention is not simply to give a set of 
recipes for solving problems, but rather to present the underlying mathe
matical structure. In this sense, we agree with R. W. Hamming [1962] that 
the purpose of numerical analysis is "insight, not numbers." 

In choosing material to include here, our main criterion was that it 
should show how one typically approaches problems in numerical analysis. 
In addition, we have tried to make the book sufficiently complete so as to pro

vide a solid basis for studying more specialized areas of numerical analysis, 
such as the solution of differential or integral equations, nonlinear optimiza
tion, or integral transforms. Thus, cross-connections and open questions 
have also been discussed. In summary, we have tried to select material and 
to organize it in such a way as to meet our mathematical goals, while at the 
same time giving the reader some of the feeling of joy that Gauss expressed 
in his letter quoted at the beginning of this preface. 

The amount of material in this book exceeds what is usually covered 
in a two semester course. Thus, the instructor has a variety of possibilities 

for selecting material. If you are a student who is using this book as a 
supplement to other course materials, we hope that our presentation covers 

all of the material contained in your course, and that it will help deepen 
your understanding and provide new insights. Chapter 1 of the book deals 



VI Preface 

with the basic question of arithmetic, and in particular how it is done by 
machines. We start the book with this subject since all of mathematics 
grows out of numbers, and since numerical analysis must deal with them. 
However, it is not absolutely necessary to study Chapter 1 in detail before 
proceeding to the following chapters. The remaining chapters can be divided 
into two major parts: Chapters 4 - 7 along with Sections 1 and 2 of Chapter 
8 deal with classical problems of numerical analysis. Chapters 2, 3 and 9, 
and the remainder of Chapter 8 are devoted to numerical linear algebra. 

A number of our colleagues were involved in the development and pro
duction of this book. We thank all of them heartily. In particular, we would 
like to mention L. Bamberger, A. Burgstaller, P. Knabner, M. Hilpert, E. 
Schafer, U. Schmid, D. Schuster, W. Spann and M. Thoma for suggestions, 
for reading parts of the manuscript and galley proofs, and for putting to
gether the index. We would like to thank I. Eichenseher for mastering the 
mysteries of 'lEX; C. Niederauer and K. Bernt for preparing the figures and 
tables; and H. Hornung and I. Mignani for typing parts of the manuscript. 
Our special thanks are due to M.-E. Eberle for her skillful preparation of the 
camera-ready copy of the book, and her patient willingness to go through 
many revision with the authors. 

Munich and Augsburg 

December, 1988 

G. Hammerlin 

K.-H. Hoffmann 

Note to the reader: This book contains a total of 270 exercises of various 
degrees of difficulty. These can be found at the end of each section. Cross 
references to material in other sections or subsections of a given chapter will 
be made by referring only to the section and subsection number. Otherwise, 
the chapter number is placed in front of them. We use square brackets [.J to 
refer to the papers and books listed at the end. 

Translator's Note: This book is a direct translation of the first German edi
tion, with only very minor changes. Several misprints have been corrected, 
and some English language references have been added or substituted for the 
original German ones. I would like to thank my wife, Gerda, for her help in 
preparing the translation and the camera-ready manuscript. 

Munich, July, 1990 1. L. Schumaker 
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