Editors
S. Axler
F.W. Gehring
K.A. Ribet

Springer

New York
Berlin
Heidelberg
Barcelona
Budapest
Hong Kong
London
Milan
Paris
Tokyo

Graduate Texts in Mathematics
 Readings in Mathematics

Ebbinghaus/Hermes/Hirzebruch/Koecher/Mainzer/Neukirch/Prestel/Remmert: Numbers
Fulton/Harris: Representation Theory: A First Course
Remmert: Theory of Complex Functions

Undergraduate Texts in Mathematics
 Readings in Mathematics

Anglin: Mathematics: A Concise History and Philosophy Anglin/Lambek: The Heritage of Thales
Bix: Comics and Cubics: A Concrete Introduction to Algebraic Curves
Bressoud: Second Year Calculus
Hairer/Wanner: Analysis by Its History
Hämmerlin/Hoffmann: Numerical Mathematics
Isaac: The Pleasures of Probability
Samuel: Projective Geometry
Stillwell: Numbers and Geometry
Toth: Glimpses of Algebra and Geometry

Günther Hämmerlin Karl-Heinz Hoffmann

Numerical Mathematics

Translated by Larry Schumaker

With 76 Illustrations
Günther Hämmerlin
Mathematisches Institut
Ludwig-Maximilians-Universität
W-8000 München 2
Germany
Larry L. Schumaker (Translator)
Department of Mathematics
Vanderbilt University
Nashville, TN 37235
USA

Karl-Heinz Hoffmann
Mathematisches Institut
Universität Augsburg
W-8900 Augsburg
Germany

This book is a translation of Numerische Mathematik, Grundwissen Mathematik 7, Springer-Verlag, 1989.
Editorial Board

S. Axler	F.W. Gehring	K.A. Ribet
Mathematics Department	Mathematics Department	Department of Mathematics
San Francisco State	East Hall	University of California
University	University of Michigan	at Berkeley
San Francisco, CA 94132	Ann Arbor, MI 48109	Berkeley, CA 94720-3840
USA	USA	USA

Mathematics Subject Classification (1991): 65-01

Library of Congress Cataloging-in-Publication Data
Hämmerlin, G. (Günther), 1928-
[Numerische Mathematik. English]
Numerical mathematics / Günther Hämmerlin, Karl-Heinz Hoffmann ;
translated by Larry Schumaker.
p. cm. - (Undergraduate texts in mathematics. Readings in
mathematics)
Translation of: Numerische Mathematik.
Includes bibliographical references and index.

1. Numerical analysis. I. Hoffman, K.-H. (Karl-Heinz)
II. Title. III. Series.

QA297.H2513 1991
519.4-dc20

90-22552
Printed on acid-free paper.
© 1991 Springer-Verlag New York Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Camera-ready copy provided by the translator.
Printed and bound by Braun-Brumfield Inc., Ann Arbor, MI.
Printed in the United States of America.

ISBN-13:978-0-387-97494-1 e-ISBN-13:978-1-4612-4442-4
DOI.10.1007/978-1-4612-4442-4

Preface

Abstract

"In truth, it is not knowledge, but learning, not possessing, but production, not being there, but travelling there, which provides the greatest pleasure. When I have completely understood something, then I turn away and move on into the dark; indeed, so curious is the insatiable man, that when he has completed one house, rather than living in it peacefully, he starts to build another."

Letter from C. F. Gauss to W. Bolyai on Sept. 2, 1808
This textbook adds a book devoted to applied mathematics to the series "Grundwissen Mathematik." Our goals, like those of the other books in the series, are to explain connections and common viewpoints between various mathematical areas, to emphasize the motivation for studying certain problem areas, and to present the historical development of our subject.

Our aim in this book is to discuss some of the central problems which arise in applications of mathematics, to develop constructive methods for the numerical solution of these problems, and to study the associated questions of accuracy. In doing so, we also present some theoretical results needed for our development, especially when they involve material which is beyond the scope of the usual beginning courses in calculus and linear algebra. This book is based on lectures given over many years at the Universities of Freiburg, Munich, Berlin and Augsburg. Our intention is not simply to give a set of recipes for solving problems, but rather to present the underlying mathematical structure. In this sense, we agree with R. W. Hamming [1962] that the purpose of numerical analysis is "insight, not numbers."

In choosing material to include here, our main criterion was that it should show how one typically approaches problems in numerical analysis. In addition, we have tried to make the book sufficiently complete so as to provide a solid basis for studying more specialized areas of numerical analysis, such as the solution of differential or integral equations, nonlinear optimization, or integral transforms. Thus, cross-connections and open questions have also been discussed. In summary, we have tried to select material and to organize it in such a way as to meet our mathematical goals, while at the same time giving the reader some of the feeling of joy that Gauss expressed in his letter quoted at the beginning of this preface.

The amount of material in this book exceeds what is usually covered in a two semester course. Thus, the instructor has a variety of possibilities for selecting material. If you are a student who is using this book as a supplement to other course materials, we hope that our presentation covers all of the material contained in your course, and that it will help deepen your understanding and provide new insights. Chapter 1 of the book deals
with the basic question of arithmetic, and in particular how it is done by machines. We start the book with this subject since all of mathematics grows out of numbers, and since numerical analysis must deal with them. However, it is not absolutely necessary to study Chapter 1 in detail before proceeding to the following chapters. The remaining chapters can be divided into two major parts: Chapters 4-7 along with Sections 1 and 2 of Chapter 8 deal with classical problems of numerical analysis. Chapters 2, 3 and 9, and the remainder of Chapter 8 are devoted to numerical linear algebra.

A number of our colleagues were involved in the development and production of this book. We thank all of them heartily. In particular, we would like to mention L. Bamberger, A. Burgstaller, P. Knabner, M. Hilpert, E. Schäfer, U. Schmid, D. Schuster, W. Spann and M. Thoma for suggestions, for reading parts of the manuscript and galley proofs, and for putting together the index. We would like to thank I. Eichenseher for mastering the mysteries of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$; C. Niederauer and K. Bernt for preparing the figures and tables; and H. Hornung and I. Mignani for typing parts of the manuscript. Our special thanks are due to M.-E. Eberle for her skillful preparation of the camera-ready copy of the book, and her patient willingness to go through many revision with the authors.

Munich and Augsburg	G. Hämmerlin
December, 1988	K.-H. Hoffmann

Note to the reader: This book contains a total of 270 exercises of various degrees of difficulty. These can be found at the end of each section. Cross references to material in other sections or subsections of a given chapter will be made by referring only to the section and subsection number. Otherwise, the chapter number is placed in front of them. We use square brackets [•] to refer to the papers and books listed at the end.

Translator's Note: This book is a direct translation of the first German edition, with only very minor changes. Several misprints have been corrected, and some English language references have been added or substituted for the original German ones. I would like to thank my wife, Gerda, for her help in preparing the translation and the camera-ready manuscript.

Contents

Chapter 1. Computing

§1. Numbers and Their Representation11.1 Representing numbers in arbitrary bases $2 * 1.2$ Analog and digitalcomputing machines $5 * 1.3$ Binary arithmetic $8 * 1.4$ Fixed-pointarithmetic $10 * 1.5$ Floating-point arithmetic $11 * 1.6$ Problems 12
§2. Floating Point Arithmetic 13
2.1 The roundoff rule $13 * 2.2$ Combining floating point numbers 15 * 2.3 Numerically stable vs. unstable evaluation of formulae $17 * 2.4$ Problems 19
§3. Error Analysis 19
3.1 The condition of a problem $20 * 3.2$ Forward error analysis $22 * 3.3$ Backward error analysis 26 * 3.4 Interval arithmetic $27 * 3.5$ Problems 28
§4. Algorithms 30
4.1 The Euclidean algorithm $30 * 4.2$ Evaluation of algorithms $33 * 4.3$ Complexity of algorithms $36 * 4.4$ The complexity of some algorithms $40 * 4.5$ Divide and conquer $41 * 4.6$ Fast matrix multiplication $44 *$ 4.7 Problems 45
Chapter 2. Linear Systems of Equations
§1. Gauss Elimination 47
1.1 Notation and statement of the problem $48 * 1.2$ The elimination method $48 * 1.3$ Triangular decomposition by Gauss elimination $50 *$ 1.4 Some special matrices $55 * 1.5$ On pivoting $57 * 1.6$ Complexity of Gauss elimination $58 * 1.7$ Problems 60
§2. The Cholesky Decomposition 61
2.1 Review of positive definite matrices $61 * 2.2$ The Cholesky decom- position $61 * 2.3$ Complexity of the Cholesky decomposition $63 * 2.4$ Problems 63
§3. The QR Decomposition of Householder 64
3.1 Householder matrices $64 * 3.2$ The basic problem $65 * 3.3$ The Householder algorithm 66 * 3.4 Complexity of the QR decomposition 67 * 3.5 Problems 67
§4. Vector Norms and Norms of Matrices 68
4.1 Norms on vector spaces $68 * 4.2$ The natural norm of a matrix 69

* 4.3 Special norms of matrices 70 * 4.4 Problems 72
§5. Error Bounds 73
5.1 Condition of a matrix $73 * 5.2$ An error bound for perturbed ma- trices $74 * 5.3$ Acceptability of solutions $76 * 5.4$ Problems 77
§6. Ill-Conditioned Problems 79
6.1 The singular-value decomposion of a matrix $79 * 6.2$ Pseudo-normal solutions of linear systems of equations $82 * 6.3$ The pseudo-inverse of a matrix $84 * 6.4$ More on linear systems of equations $86 * 6.5$ Improving the condition and regularization of a linear system of equations $87 *$ 6.6 Problems 90
Chapter 3. Eigenvalues
§1. Reduction to Tridiagonal or Hessenberg Form 92
1.1 The Householder method $93 * 1.2$ Computation of the eigenval- ues of tridiagonal matrices $95 * 1.3$ Computation of the eigenvalues of Hessenberg matrices $97 * 1.4$ Problems 98
§2. The Jacobi Rotation and Eigenvalue Estimates 98
2.1 The Jacobi method $99 * 2.2$ Estimating eigenvalues $102 * 2.3$ Prob- lems 104
§3. The Power Method 105
3.1 An iterative method $105 * 3.2$ Computation of eigenvectors and further eigenvalues 107 * 3.3 The Rayleigh quotient $108 * 3.4$ Problems 109
$\S 4$. The QR Algorithm 110
4.1 Convergence of the QR algorithm 110 * 4.2 Remarks on the LR algorithm $114 * 4.3$ Problems 116
Chapter 4. Approximation
§1. Preliminaries 118
1.1 Normed linear spaces $118 * 1.2$ Banach spaces $119 * 1.3$ Hilbert spaces and pre-Hilbert spaces $120 * 1.4$ The spaces $\mathrm{L}^{p}[a, b] 122 * 1.5$ Linear operators 123 * 1.6 Problems 124
§2. The Approximation Theorems of Weierstrass 125
2.1 Approximation by polynomials $125 * 2.2$ The approximation theo- rem for continuous functions $126 * 2.3$ The Korovkin approach $129 *$ 2.4 Applications of Theorem $2.3131 * 2.5$ Approximation error $133 *$ 2.6 Problems 135
§3. The General Approximation Problem 136
3.1 Best approximations $136 * 3.2$ Existence of a best approximation $137 * 3.3$ Uniqueness of a best approximation $138 * 3.4$ Linear approxi- mation $139 * 3.5$ Uniqueness in finite dimensional linear subspaces 140 * 3.6 Problems 143
§4. Uniform Approximation 144
4.1 Approximation by polynomials $144 * 4.2$ Haar spaces $146 * 4.3$ The alternation theorem $147 * 4.4$ Uniqueness $148 * 4.5$ An error bound 148 * 4.6 Computation of the best approximation $149 * 4.7$ Chebyshev poly- nomials of the first kind $153 * 4.8$ Expansions in Chebyshev polynomials $154 * 4.9$ Convergence of best approximations $156 * 4.10$ Nonlinear ap- proximation $157 * 4.11$ Remarks on approximation in (C $a, b],\|\cdot\|_{1}$) 158 * 4.12 Problems 159
§5. Approximation in Pre-Hilbert Spaces 160
5.1 Characterization of the best approximation $160 * 5.2$ The normal equations $161 * 5.3$ Orthonormal systems $161 * 5.4$ The Legendre poly- nomials $163 * 5.5$ Properties of orthonormal polynomials $165 * 5.6$ Con- vergence in $\mathrm{C}[a, b] 166 * 5.7$ Approximation of piecewise continuous functions $167 * 5.8$ Trigonometric approximation $168 * 5.9$ Problems 171
§6. The Method of Least Squares 172
6.1 Discrete approximation $173 * 6.2$ Solution of the normal equations $174 * 6.3$ Fitting by polynomials $175 * 6.4$ Coalescent data points $176 *$ 6.5 Discrete approximation by trigonometric functions $178 * 6.6$ Prob- lems 181

Chapter 5. Interpolation

§1. The Interpolation Problem 182
1.1 Interpolation in Haar spaces $182 * 1.2$ Interpolation by polynomi- als $183 * 1.3$ The remainder term $184 * 1.4$ Error bounds $185 * 1.5$ Problems 187
§2. Interpolation Methods and Remainders 188
2.1 The method of Lagrange $188 * 2.2$ The method of Newton $189 * 2.3$ Divided differences $189 * 2.4$ The general Peano remainder formula 192 * 2.5 A derivative-free error bound $197 * 2.6$ Connection to analysis 198 * 2.7 Problems 200
§3. Equidistant Interpolation Points 200
3.1 The difference table $201 * 3.2$ Representations of interpolating poly- nomials $202 * 3.3$ Numerical differentiation $204 * 3.4$ Problems 208
§4. Convergence of Interpolating Polynomials 208
4.1 Best interpolation $209 * 4.2$ Convergence problems $210 * 4.3$ Con- vergence results $211 * 4.4$ Problems 213
§5. More on Interpolation 214
5.1 Horner's scheme $215 * 5.2$ The Aitken-Neville algorithm $215 * 5.3$ Hermite interpolation $217 * 5.4$ Trigonometric interpolation $219 * 5.5$ Complex interpolation $220 * 5.6$ Problems 221
§6. Multidimensional Interpolation 222
6.1 Various interpolation problems $222 * 6.2$ Interpolation on rectangu- lar grids $224 * 6.3$ Bounding the interpolation error $225 * 6.4$ Problems 227

Chapter 6. Splines

§1. Polynomial Splines 229
1.1 Spline spaces $229 * 1.2 \mathrm{~A}$ basis for the spline space $230 * 1.3$ Best approximation in spline spaces $231 * 1.4$ Problems 233
§2. Interpolating Splines 234
2.1 Splines of odd degree $234 * 2.2$ An extremal property of splines 237

* 2.3 Quadratic splines 238 * 2.4 Convergence 240 * 2.5 Problems 241
§3. B-splines 242
3.1 Existence of B-splines $242 * 3.2$ Local bases $243 * 3.3$ Additional properties of B-splines $245 * 3.4$ Linear B-splines $247 * 3.5$ Quadratic B-splines $248 * 3.6$ Cubic B-splines $248 * 3.7$ Problems 249
§4. Computing Interpolating Splines 249
4.1 Cubic splines $250 * 4.2$ Quadratic splines $252 * 4.3$ A general inter- polation problem 253** 4.4 Problems 255
§5. Error Bounds and Spline Approximation 256
5.1 Error bounds for linear splines $256 * 5.2$ On uniform approximation by linear splines $258 * 5.3$ Least squares approximation by linear splines $258 * 5.4$ Error bounds for splines of higher degree $260 * 5.5$ Least squares splines of higher degree $263 * 5.6$ Problems 264
§6. Multidimensional Splines 265
6.1 Bilinear splines $266 * 6.2$ Bicubic splines $267 * 6.3$ Spline-blended functions $268 * 6.4$ Problems 271
Chapter 7. Integration
§1. Interpolatory Quadrature 273
1.1 Rectangle rules $273 *$ 1.2 The trapezoidal rule $276 * 1.3$ The Euler- MacLaurin expansion $279 *$ 1.4 Simpson's rule $282 * 1.5$ Newton-Cotes formulae $286 * 1.6$ Unsymmetric quadrature formulae $286 * 1.7$ Prob- lems 287
§2. Extrapolation 288
2.1 The Romberg method $288 * 2.2$ Error analysis $290 * 2.3$ Extrapo- lation $292 * 2.4$ Convergence $293 * 2.5$ Problems 296
§3. Gauss Quadrature 296
3.1 The method of Gauss $297 * 3.2$ Gauss quadrature as interpolation quadrature $299 * 3.3$ Error formula $299 * 3.4$ Modified Gauss quadra- ture $301 * 3.5$ Improper integrals $302 * 3.6$ Nodes and coefficients of Gauss quadrature formulae $304 * 3.7$ Problems 306
§4. Special Quadrature Methods 307
4.1 Integration over an infinite interval $307 * 4.2$ Singular integrands $308 * 4.3$ Periodic functions $310 * 4.4$ Problems 311
§5. Optimality and Convergence 311
5.1 Norm minimization $312 * 5.2$ Minimizing random errors $313 * 5.3$ Optimal quadrature formulae $314 * 5.4$ Convergence of quadrature for- mulae 316 * 5.5 Quadrature operators 319 * 5.6 Problems 320
§6. Multidimensional Integration 321
6.1 Tensor products $321 * 6.2$ Integration over standard domains $324 *$ 6.3 The Monte-Carlo method $326 * 6.4$ Problems 328
Chapter 8. Iteration
§1. The General Iteration Method 331
1.1 Examples of convergent iterations $331 * 1.2$ Convergence of iterative methods 331 * 1.3 Lipschitz constants 334 * 1.4 Error bounds 334 * 1.5 Convergence 336 * 1.6 Problems 337
§2. Newton's Method 338
2.1 Accelerating the convergence of an iterative method $338 * 2.2$ Ge- ometric interpretation $339 * 2.3$ Multiple zeros $340 * 2.4$ The secant method $341 * 2.5$ Newton's method for $m>1.343 * 2.6$ Roots of polynomials $344 * 2.7$ Problems 345
§3. Iterative Solution of Linear Systems of Equations 347
3.1 Sequences of iteration matrices $347 * 3.2$ The Jacobi method 349 * 3.3 The Gauss-Seidel method 353 * 3.4 The theorem of Stein and Rosenberg 355 * 3.5 Problems 359
§4. More on Convergence 360
4.1 Relaxation for the Jacobi method $360 * 4.2$ Relaxation for the Gauss-Seidel method $362 * 4.3$ Optimal relaxation parameters $364 *$ 4.4 Problems 370
Chapter 9. Linear Optimization
§1. Introductory Examples and the General Problem 371
1.1 Optimal production planning $371 * 1.2 \mathrm{~A}$ semi-infinite optimization problem $373 * 1.3 \mathrm{~A}$ linear control problem $374 * 1.4$ The general problem 375 * 1.5 Problems 376
§2. Polyhedra 377
2.1 Characterization of vertices $377 * 2.2$ Existence of vertices $378 *$ 2.3 The main result $380 * 2.4$ An algebraic characterization of vertices $381 * 2.5$ Problems 382
§3. The Simplex Method 383
3.1 Introduction 383 * 3.2 The vertex exchange without degeneracy 385 * 3.3 Finding a starting vertex $389 * 3.4$ Degenerate vertices $391 * 3.5$ The two-phase method $391 * 3.6$ The modified simplex method $393 *$ 3.7 Problems 394
§4. Complexity Analysis 395
4.1 The examples of Klee and Minty $396 * 4.2$ On the average behavior of the algorithm $396 * 4.3$ Runtime of algorithms $398 * 4.4$ Polynomial algorithms $399 * 4.5$ Problems 404
References 405
Symbols 412
Index 414

