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Preface 

Our aim in writing this book was to provide an extensive set of C++ programs for 
solving basic numerical problems with verification of the results. This C++ Toolbox 
for Verified Computing I is the C++ edition of the Numerical Toolbox for Verified 
Computing l. The programs of the original edition were written in PASCAL-XSC, a 
PASCAL eXtension for Scientific Computation. Since we published the first edition 
we have received many requests from readers and users of our tools for a version in 
C++. 

We take the view that C++ is growing in importance in the field of numeri
cal computing. C++ includes C, but as a typed language and due to its modern 
concepts, it is superior to C. To obtain the degree of efficiency that PASCAL-XSC 
provides, we used the C-XSC library. C-XSC is a C++ class library for eXtended 
Scientific Computing. C++ and the C-XSC library are an adequate alternative 
to special XSC-Ianguages such as PASCAL-XSC or ACRITH-XSC. A shareware 
version of the C-XSC library and the sources of the toolbox programs are freely 
available via anonymous ftp or can be ordered against reimbursement of expenses. 

The programs of this book do not require a great deal of insight into the features 
of C++. Particularly, object oriented programming techniques are not required. 
However, the reader should be familiar with writing programs in a high-level com
puter language such as PASCAL, C, or FORTRAN. This book is particularly useful 
for those programmers who have already worked with the PASCAL-XSC edition 
but have only little knowledge in the C++ language. For those readers our book 
may be a source of inspiration when switching from PASCAL to C++. 

We want to thank the readers of the original version of this book for their over
whelmingly positive comments. We incorporated some minor modifications in our 
algorithms which take into account the highly valuable suggestions and comments 
we received from numerous readers, as well as our own experience while using the 
toolbox. Some errors and misprints in the original edition have now been corrected. 
Nevertheless, we encourage readers, especially those of this C++ edition, to keep 
on communicating error reports to us. 

Special thanks to Andreas Wiethoff who supported us in all questions concern
ing C++ and the C-XSC library. Last but not least, we wish to express again 
our appreciation to all colleagues whose advice helped produce the original edition, 
particularly those mentioned in the following preface of the PASCAL-XSC edition. 

Karlsruhe, December 1994 The Authors 



Preface to the PASCAL-XSC Edition 

As suggested by the title of this book Numerical Toolbox for Verified Computing, we 
present an extensive set of sophisticated tools to solve basic numerical problems with 
a verification of the results. We use the features of the scientific computer language 
PASCAL-XSC to offer modules that can be combined by the reader to his/her 
individual needs. Our overriding concern is reliability - the automatic ve1'ification 
of the result a computer returns for a given problem. All algorithms we present are 
influenced by this central concern. We must point out that there is no relationship 
between our methods of numerical result verification and the methods of program 
verification to prove the correctness of an implementation for a given algorithm. 

This book is the first to offer a general discussion on 

• arithmetic and computational reliability, 

• analytical mathematics and verification techniques, 

• algorithms, and 

• (most importantly) actual implementations in the form of working computer 
routines. 

Our task has been to find the right balance among these ingredients for each topic. 
For some topics, we have placed a little more emphasis on the algorithms. For other 
topics, where the mathematical prerequisites are universally held, we have tended 
towards more in-depth discussion of the nature of the computational algorithms, 
or towards practical questions of implementation. For all topics, we present exam
ples, exercises, and numerical results demonstrating the application of the routines 
presented. 

The different chapters of this volume require different levels of knowledge in nu
merical analysis. Most numerical toolboxes have, after all, tools at varying levels 
of complexity. Chapters 2, 3, 4, 5, 6, and 10 are suitable for an advanced under
graduate course on numerical computation for science or engineering majors. Other 
chapters range from the level of a graduate course to that of a professional reference. 
An attractive feature of this approach is that you can use the book at increasing 
levels of sophistication as your experience grows. Even inexperienced readers can 
use our most advanced routines as black boxes. Having done so, these readers can 
go back and learn what secrets are inside. 

The central theme in this book is that practical methods of numerical computa
tion can be simultaneously efficient, clever, clear, and (most importantly) reliable. 



viii Preface to the PASCAL-XSC Edition 

We firmly reject the alternative viewpoint that such computational methods must 
necessarily be so obscure and complex as to be useful only in "black box" form 
where you have to believe in any calculated result. 

This book introduces many computational verification techniques. We want to 
teach you to take apart these black boxes and to put them back together again, 
modifying them to suit your specific needs. We assume that you are mathematically 
literate, i.e. that you have the normal mathematical preparation associated with 
an undergraduate degree in a mathematical, computational, or physical science, or 
engineering, or economics, or a quantitative social science. We assume that you 
know how to program a computer and that you have some knowledge of scientific 
computation, numerical analysis, or numerical methods. We do not assume that you 
have any prior formal knowledge of numerical verification or any familiarity with 
interval analysis. The necessary concepts are introduced. 

Volume 1 of Numerical Toolbox for Verified Computing provides algorithms and 
programs to solve basic numerical problems using automatic result verification tech
niques. 

Part I contains two introductory chapters on the features of the scientific com
puter language PASCAL-XSC and on the basics and terminology of interval arith
metic. Within these chapters, the important correlation between the arithmetic 
capability and computational accuracy and mathematical fixed-point theory is also 
discussed. 

Part II addresses one-dimensional problems: evaluation of polynomials and gen
eral arithmetic expressions, nonlinear root-finding, automatic differentiation, and 
optimization. Even though only one-dimensional problems treated in this part, 
the verification methods sometimes require multi-dimensional features like vector or 
matrix operations. 

In Part III, we present routines to solve multi-dimensional problems such as linear 
and nonlinear systems of equations, linear and global optimization, and automatic 
differentiation for gradients, Hessians, and Jacobians. 

Further volumes of Numerical Toolbox for Verified Computing are in preparation 
covering computational methods in the field of linear systems of equations for com
plex, interval, and complex interval coefficients, sparse linear systems, eigenvalue 
problems, matrix exponential, quadrature, automatic differentiation for Taylor se
ries, initial value, boundary value and eigenvalue problems of ordinary differential 
equations, and integral equations. Editions of the program source code of this vol
ume in the C++ computer language are also in preparation. 

Some of the subjects that we cover in detail are not usually found in standard 
numerical analysis texts. Although this book is intended primarily as a reference text 
for anyone wishing to apply, modify, or develop routines to obtain mathematically 
certain and reliable results, it could also be used as a textbook for an advanced 
course in scientific computation with automatic result verification. 

We express our appreciation to all our colleagues whose comments on our book 
were constructive and encouraging, and we thank our students for their help in test
ing our routines, modules, and programs. We are very grateful to Prof. Dr. George 
Corliss (Marquette University, Milwaukee, USA) who helped to polish the text and 
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the contents. His comments and advice based on his numerical and computational 
experience greatly improved the presentation of our tools for Verified Computing. 

Karlsruhe, September 1993 The Authors 

The computer programs in this book 

and a shareware version of the C-XSC library are available in several machine
readable formats. To purchase diskettes in IBM-PC compatible format, use the 
order form at the end of the book. The programs and the library are also available 
by anonymous ftp from 

iamk4515 .mathematik. uni-karlsruhe .de (129.13.129.15) 

in subdirectory 

pub/toolbox/cxsc. 

Technical questions, corrections, and requests for information on other available 
formats and software products should be directed to Numerical Toolbox Software, 
Institut fur Angewandte Mathematik, Universitat Karlsruhe, D-76128 Karlsruhe, 
Germany, e-mail: toolbox@iampc4.mathematik.uni-karlsruhe.de. 
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