
c++ Toolbox for Verified Computing I 



R. Hammer M. Hocks 
U. Kulisch D. Ratz 

C++ Toolbox 
for Verified 
Computing I 
Basic Numerical Problems 
Theory, Algorithms, and Programs 

With 29 Figures 

Springer 



Prof. Dr. Ulrich Kulisch 
Dr. Rolf Hammer 
Dr. Matthias Hocks 
Dr. Dietmar Ratz 
Institut fur Angewandte Mathematik 
UniversiHit Karlsruhe 
D-76128 Karlsruhe 

Cover figure: Function of Levy (see also page 337) 

Mathematics Subject Classification (1991): 65-01, 65-04, 65F, 65G 10, 65H, 65K 

ISBN-13: 978-3-642-79653-1 

Library of Congress Cataloging-in-Publication Data 
C++ toolbox for verified computing: theory, algorithms, and programs 
R.Hammer let al.J. p.cm. - Includes bibliographical references and index. Contents: 
v. 1. Basic numerical problems. 
ISBN-13: 978-3-642-79653-1 e-ISBN-13: 978-3-642-79651-7 
DOl: 10.1007/978-3-642-79651-7 
1. C++ (Computer program language) I. Hammer, (Rolf), 1961-. 
QA76.73.CI53CI8 1995 519.4'0285'5133--dc20 95-10173 CIP 

This work is subject to copyright. All rights are reserved, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on micro-film or in any other 
way, and storage in data banks. Duplication of this publication or parts thereof is 
permitted only under the provisions of the German Copyright Law of September 9, 
1965, in its current version, and permission for use must always be obtained from 
Springer-Verlag. Violations are liable for prosecution under the German Copyright 
Law. 

© Springer-Verlag Berlin Heidelberg 1995 
Softcover reprint of the hardcover 1st edition 1995 

The copyright for the computer programs in this publication is owned by the authors. 

The use of general descriptive names, trademarks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the 
relevant protective laws and regulations and therefore free for general use. 

Disclaimer/Legal Matters: Springer-Verlag and the authors make no warranties with 
respect to the adequacy of this book or the programs which it describes for any 
particular purpose or with respect to its adequacy to produce any particular result. We 
make no warranties, express or implied, that the programs contained in this volume are 
free of error, or are consistent with any particular standard of merchantability, or that 
they will meet your requirements for any particular application. They should not be 
relied on for solving a problem whose incorrect solution could result in injury to a 
person or loss of property. If you do use the programs in such a manner, it is at your 
own risk. 
In no event shall SpringercVerlag or the authors be liable for special, direct, indirect or 
consequential damages, losses, costs, charges, claims, demands or claim for lost profits, 
fees or expenses of any nature or kind. 

Typesetting: Camera ready by authors using T EX 
SPIN 10492623 41/3142 - 5432 10- Printed on acid-free paper 



Preface 

Our aim in writing this book was to provide an extensive set of C++ programs for 
solving basic numerical problems with verification of the results. This C++ Toolbox 
for Verified Computing I is the C++ edition of the Numerical Toolbox for Verified 
Computing l. The programs of the original edition were written in PASCAL-XSC, a 
PASCAL eXtension for Scientific Computation. Since we published the first edition 
we have received many requests from readers and users of our tools for a version in 
C++. 

We take the view that C++ is growing in importance in the field of numeri
cal computing. C++ includes C, but as a typed language and due to its modern 
concepts, it is superior to C. To obtain the degree of efficiency that PASCAL-XSC 
provides, we used the C-XSC library. C-XSC is a C++ class library for eXtended 
Scientific Computing. C++ and the C-XSC library are an adequate alternative 
to special XSC-Ianguages such as PASCAL-XSC or ACRITH-XSC. A shareware 
version of the C-XSC library and the sources of the toolbox programs are freely 
available via anonymous ftp or can be ordered against reimbursement of expenses. 

The programs of this book do not require a great deal of insight into the features 
of C++. Particularly, object oriented programming techniques are not required. 
However, the reader should be familiar with writing programs in a high-level com
puter language such as PASCAL, C, or FORTRAN. This book is particularly useful 
for those programmers who have already worked with the PASCAL-XSC edition 
but have only little knowledge in the C++ language. For those readers our book 
may be a source of inspiration when switching from PASCAL to C++. 

We want to thank the readers of the original version of this book for their over
whelmingly positive comments. We incorporated some minor modifications in our 
algorithms which take into account the highly valuable suggestions and comments 
we received from numerous readers, as well as our own experience while using the 
toolbox. Some errors and misprints in the original edition have now been corrected. 
Nevertheless, we encourage readers, especially those of this C++ edition, to keep 
on communicating error reports to us. 

Special thanks to Andreas Wiethoff who supported us in all questions concern
ing C++ and the C-XSC library. Last but not least, we wish to express again 
our appreciation to all colleagues whose advice helped produce the original edition, 
particularly those mentioned in the following preface of the PASCAL-XSC edition. 

Karlsruhe, December 1994 The Authors 



Preface to the PASCAL-XSC Edition 

As suggested by the title of this book Numerical Toolbox for Verified Computing, we 
present an extensive set of sophisticated tools to solve basic numerical problems with 
a verification of the results. We use the features of the scientific computer language 
PASCAL-XSC to offer modules that can be combined by the reader to his/her 
individual needs. Our overriding concern is reliability - the automatic ve1'ification 
of the result a computer returns for a given problem. All algorithms we present are 
influenced by this central concern. We must point out that there is no relationship 
between our methods of numerical result verification and the methods of program 
verification to prove the correctness of an implementation for a given algorithm. 

This book is the first to offer a general discussion on 

• arithmetic and computational reliability, 

• analytical mathematics and verification techniques, 

• algorithms, and 

• (most importantly) actual implementations in the form of working computer 
routines. 

Our task has been to find the right balance among these ingredients for each topic. 
For some topics, we have placed a little more emphasis on the algorithms. For other 
topics, where the mathematical prerequisites are universally held, we have tended 
towards more in-depth discussion of the nature of the computational algorithms, 
or towards practical questions of implementation. For all topics, we present exam
ples, exercises, and numerical results demonstrating the application of the routines 
presented. 

The different chapters of this volume require different levels of knowledge in nu
merical analysis. Most numerical toolboxes have, after all, tools at varying levels 
of complexity. Chapters 2, 3, 4, 5, 6, and 10 are suitable for an advanced under
graduate course on numerical computation for science or engineering majors. Other 
chapters range from the level of a graduate course to that of a professional reference. 
An attractive feature of this approach is that you can use the book at increasing 
levels of sophistication as your experience grows. Even inexperienced readers can 
use our most advanced routines as black boxes. Having done so, these readers can 
go back and learn what secrets are inside. 

The central theme in this book is that practical methods of numerical computa
tion can be simultaneously efficient, clever, clear, and (most importantly) reliable. 



viii Preface to the PASCAL-XSC Edition 

We firmly reject the alternative viewpoint that such computational methods must 
necessarily be so obscure and complex as to be useful only in "black box" form 
where you have to believe in any calculated result. 

This book introduces many computational verification techniques. We want to 
teach you to take apart these black boxes and to put them back together again, 
modifying them to suit your specific needs. We assume that you are mathematically 
literate, i.e. that you have the normal mathematical preparation associated with 
an undergraduate degree in a mathematical, computational, or physical science, or 
engineering, or economics, or a quantitative social science. We assume that you 
know how to program a computer and that you have some knowledge of scientific 
computation, numerical analysis, or numerical methods. We do not assume that you 
have any prior formal knowledge of numerical verification or any familiarity with 
interval analysis. The necessary concepts are introduced. 

Volume 1 of Numerical Toolbox for Verified Computing provides algorithms and 
programs to solve basic numerical problems using automatic result verification tech
niques. 

Part I contains two introductory chapters on the features of the scientific com
puter language PASCAL-XSC and on the basics and terminology of interval arith
metic. Within these chapters, the important correlation between the arithmetic 
capability and computational accuracy and mathematical fixed-point theory is also 
discussed. 

Part II addresses one-dimensional problems: evaluation of polynomials and gen
eral arithmetic expressions, nonlinear root-finding, automatic differentiation, and 
optimization. Even though only one-dimensional problems treated in this part, 
the verification methods sometimes require multi-dimensional features like vector or 
matrix operations. 

In Part III, we present routines to solve multi-dimensional problems such as linear 
and nonlinear systems of equations, linear and global optimization, and automatic 
differentiation for gradients, Hessians, and Jacobians. 

Further volumes of Numerical Toolbox for Verified Computing are in preparation 
covering computational methods in the field of linear systems of equations for com
plex, interval, and complex interval coefficients, sparse linear systems, eigenvalue 
problems, matrix exponential, quadrature, automatic differentiation for Taylor se
ries, initial value, boundary value and eigenvalue problems of ordinary differential 
equations, and integral equations. Editions of the program source code of this vol
ume in the C++ computer language are also in preparation. 

Some of the subjects that we cover in detail are not usually found in standard 
numerical analysis texts. Although this book is intended primarily as a reference text 
for anyone wishing to apply, modify, or develop routines to obtain mathematically 
certain and reliable results, it could also be used as a textbook for an advanced 
course in scientific computation with automatic result verification. 

We express our appreciation to all our colleagues whose comments on our book 
were constructive and encouraging, and we thank our students for their help in test
ing our routines, modules, and programs. We are very grateful to Prof. Dr. George 
Corliss (Marquette University, Milwaukee, USA) who helped to polish the text and 



Preface to the PASCAL-XSC Edition ix 

the contents. His comments and advice based on his numerical and computational 
experience greatly improved the presentation of our tools for Verified Computing. 

Karlsruhe, September 1993 The Authors 

The computer programs in this book 

and a shareware version of the C-XSC library are available in several machine
readable formats. To purchase diskettes in IBM-PC compatible format, use the 
order form at the end of the book. The programs and the library are also available 
by anonymous ftp from 

iamk4515 .mathematik. uni-karlsruhe .de (129.13.129.15) 

in subdirectory 

pub/toolbox/cxsc. 

Technical questions, corrections, and requests for information on other available 
formats and software products should be directed to Numerical Toolbox Software, 
Institut fur Angewandte Mathematik, Universitat Karlsruhe, D-76128 Karlsruhe, 
Germany, e-mail: toolbox@iampc4.mathematik.uni-karlsruhe.de. 



Table of Contents 

1 Introduction.... . . . . . . 1 
1.1 Advice for Quick Reading 1 
1.2 Structure of the Book. 2 
1.3 Typography . . . . . 3 
1.4 Algorithmic Notation . 3 
1.5 Implementation.... 4 
1.6 Computational Environment 6 
1.7 Why Numerical Result Verification? . 6 

1.7.1 A Brief History of Computing 7 
1.7.2 Arithmetic on Computers . . 8 
1.7.3 Extensions of Ordinary Floating-Point Arithmetic. 9 
1.7.4 Scientific Computation with Automatic Result Verification 11 
1.7.5 Program Verification versus Numerical Verification 14 

I Preliminaries. . . . . . . . 15 

2 The Features of C-XSC 17 
2.1 Data Types, Predefined Operators, and Functions 18 
2.2 Vector and Matrix Handling 21 
2.3 Dot Product Expressions 23 
2.4 Input and Output . . 25 
2.5 Data Conversion .... 26 
2.6 Predefined Modules . . . 27 
2.7 C-XSC or Other Libraries? 28 

3 Mathematical Preliminaries . 30 
3.1 Real Interval Arithmetic . . 30 
3.2 Complex Interval Arithmetic. 37 
3.3 Extended Interval Arithmetic 39 
3.4 Interval Vectors and Matrices 
3.5 Floating-Point Arithmetic .. 
3.6 Floating-Point Interval Arithmetic. 
3.7 The Problem of Data Conversion 
3.8 Principles of Numerical Verification 

41 
42 
44 
46 
50 



XlI Table of Contents 

II One-Dimensional Problems 

4 Evaluation of Polynomials 
4.1 Theoretical Background 

4.1.1 Description of the Problem. 
4.1.2 Iterative Solution ... 

4.2 Algorithmic Description .. 
4.3 Implementation and Examples . 

4.3.1 C++ Program Code 
4.3.1.1 Module rpoly 
4.3.1.2 Module rpeval 

4.3.2 Examples ..... . 
4.3.3 Restrictions and Hints 

4.4 Exercises........ . . 
4.5 References and Further Reading 

5 Automatic Differentiation 
5.1 Theoretical Background 
,5.2 Algorithmic Description 
5.3 Implementation and Examples. 

5.3.1 C++ Program Code .. 
5.3.1.1 Module ddLari 

5.3.2 Examples ...... . 
5.3.3 Restrictions and Hints 

5.4 Exercises... ....... . 
5.5 References and Further Reading 

6 Nonlinear Equations in One Variable 
6.1 Theoretical Background .. 
6.2 Algorithmic Description ... 
6.3 Implementation and Examples . 

6.4 
6.5 

6.3.1 C++ Program Code . . 
6.3.1.1 Module xi_ari . 
6.3.1.2 Module nlfzero 

6.3.2 Example ....... . 
6.3.3 Restrictions and Hints 
Exercises ........... . 
References and Further Reading 

7 Global Optimization . .. 
7.1 Theoretical Background 

7.1.1 Midpoint Test. 
7.1.2 Monotonicity Test 
7.1.3 Concavity Test .. 
7.1.4 Interval Newton Step 
7.1.5 Verification ..... 

55 

,57 
57 
57 
58 
59 
61 
61 
61 
63 
65 
68 
68 
68 

70 
70 
72 
74 
74 
74 
88 
91 
91 
91 

93 
93 
95 
98 
98 
99 

103 
108 
110 
111 
111 

113 
113 
114 
115 
116 
116 
117 



Table of Contents xiii 

7.2 Algorithmic Description .... 
7.3 Implementation and Examples. 

7.3.1 C++ Program Code .. 
7.3.1.1 Module IstLari 
7.3.1.2 Module gop1 

7.3.2 Examples ...... . 
7.3.3 Restrictions and Hints 

7.4 Exercises............ 
7.5 References and Further Reading 

8 Evaluation of Arithmetic Expressions . 
8.1 Theoretical Background ... 

8.1.1 A Nonlinear Approach . 
8.2 Algorithmic Description .... 
8.3 Implementation and Examples . 

8.3.1 C++ Program Code .. 
8.3.1.1 Module expreval 

8.3.2 Examples . . . . . . . . . 
8.3.3 Restrictions, Hints, and Improvements 

8.4 Exercises............. 
8.5 References and Further Reading 

9 Zeros of Complex Polynomials . 
9.1 Theoretical Background .... 

9.1.1 Description of the Problem. 
9.1.2 Iterative Approach .. . 

9.2 Algorithmic Description ... . 
9.3 Implementation and Examples . 

9.3.1 C++ Program Code .. 
9.3.1.1 Module cpoly . 
9.3.1.2 Module cipoly . 
9.3.1.3 Module cpzero 

9.3.2 Example........ 
9.3.3 Restrictions and Hints . 

9.4 Exercises............. 
9.5 References and Further Reading 

III Multi-Dimensional Problems 

10 Linear Systems of Equations . 
10.1 Theoretical Background ... 

10.1.1 A Newton-like Method 
10.1.2 The Residual Iteration Scheme 
10.1.3 How to Compute the Approximate Inverse 

10.2 Algorithmic Description ... . 
10.3 Implementation and Examples .......... . 

· 117 
· 123 
· 123 
· 123 
· 128 
· 134 
· 137 
· 138 
· 139 

· 140 
· 140 
· 140 
· 143 
· 146 
· 146 
· 147 
· 158 
· 162 
· 162 
· 163 

· 164 
· 164 
· 164 
· 165 
· 168 
· 173 
· 173 
· 173 
.174 
· 176 
· 182 
· 184 
· 184 
· 185 

· 187 

· 189 
· 189 
· 189 
· 190 
· 190 
· 191 
· 195 



xiv Table of Contents 

10.3.1 C++ Program Code 195 
10.3.1.1 Module matinv 195 
10.3.1.2 Module linsys . · 199 

10.3.2 Example. · 205 
10.3.3 Restrictions and Improvements · 207 

10.4 Exercises. · 207 
10.5 References and Further Reading · 209 

11 Linear Optimization . · 210 
11.1 Theoretical Background · 210 

11.1.1 Description of the Problem. · 210 
11.1.2 Verification · 211 

11.2 Algorithmic Description · 213 
11.3 Implementation and Examples. · 219 

11.3.1 C++ Program Code · 219 
11.3.1.1 Module seLari · 219 
11.3.1.2 Module lop_ari · 223 
11.3.1.3 Module rev _simp · 227 
11.3.1.4 Module lop · 230 

11.3.2 Examples · 238 
11.3.3 Restrictions and Hints · 242 

11.4 Exercises. · 242 
11.5 References and Further Reading · 243 

12 Automatic Differentiation for Gradients, Jacobians, and Hessians 244 
12.1 Theoretical Background .... . 244 
12.2 Algorithmic Description . . . . . 247 
12.3 Implementation and Examples . . 249 

12.3.1 C++ Program Code . . . 249 
12.3.1.1 Module hess_ari . . 249 
12.3.1.2 Module grad_ari . 269 

12.3.2 Examples . . . . . . . . 285 
12.3.3 Restrictions and Hints . . 291 

12.4 Exercises ............ . 
12.5 References and Further Reading 

13 Nonlinear Systems of Equations 
13.1 Theoretical Background ... 

13.1.1 Gauss-Seidel Iteration . 
13.2 Algorithmic Description .... 
13.3 Implementation and Examples. 

13.3.1 C++ Program Code .. 
13.3.1.1 Module nlinsys 

13.3.2 Example ........ . 
13.3.3 Restrictions, Hints, and Improvements 

· 291 
· 292 

· 293 
· 293 
· 294 
· 296 
· 300 
· 300 
· 301 
· 307 
· 309 



Table of Contents xv 

13.4 Exercises. . . . . . . . . . . . . . 310 
13.5 References and Further Reading . 311 

14 Global Optimization. . . . . 312 
14.1 Theoretical Background . 312 

14.1.1 Midpoint Test. . . 313 
14.1.2 Monotonicity Test . 313 
14.1.3 Concavity Test .. . 314 
14.1.4 Interval Newton Step . 314 
14.1.5 Verification . . . . . . 315 

14.2 Algorithmic Description . . . 316 
14.3 Implementation and Examples. . 323 

14.3.1 C++ Program Code . . . 323 
14.3.1.1 Module lsLari . 323 
14.3.1.2 Module gop . . 328 

14.3.2 Examples . . . . . . . . 336 
14.3.3 Restrictions and Hints . 340 

14.4 Exercises. . . . . . . . . . . . . 341 
14.5 References and Further Reading . 342 

Appendix 

A Utility Modules. · 343 
A.l Module Lutil · 343 
A.2 Module Lutil · 343 
A.3 Module ci_util . · 348 
A.4 Module mv _util · 349 
A.5 Module mvi_util . · 351 

B Alphabetical List of Modules · 356 

C List of Special Symbols . · 357 

Bibliography · 360 

Index . .... 366 



List of Figures 

1.1 An interval evaluation provides the guarantee for positive f . . . . 11 

2.1 Hierarchy of the data types and header files of the C-XSC library 27 

3.1 Attributes of an interval [x] .......... 31 
3.2 Distance between two intervals [x] and [y] .. 32 
3.3 Different interval extensions of a function f( x) 36 
3.4 Some subset relations for intervals. . . . 38 
3.5 Intersection of complex intervals . . . . . . . . 38 
3.6 Wrapping effect caused by multiplication . . . 39 
3.7 A three-dimensional real interval vector or box . 41 
3.8 The different roundings . . . . . . . . . . . . . . 43 
3.9 A floating-point interval . . . . . . . . . . . . . 45 
3.10 A priori method without (left picture) and with intersection 52 
3.11 A posteriori method without (left picture) and with c;-inflation . 52 

4.1 Polynomial p(t) for t E [1.9995,2.0005] 
4.2 Polynomial q(t) for t E [0.99999,1.00001] 

6.1 Interval Newton step with 0 fj. f'([x]{k l ) . 
6.2 Extended interval Newton step with 0 E f'([x]{k l ) 
6.3 Function f(x) = e-3x - sin3 x 

65 
66 

94 
94 

· 108 

7.1 Midpoint test . . . 114 
7.2 Monotonicity test . 115 
7.3 Concavity test. . . 116 
7.4 Function f (test function f4 in [93]) . 134 
7.5 Shubert's function 9 (test function h in [93]) . . 135 
7.6 Function h (test function fl in [93]) with several local minima . 138 
7.7 Test function r with a sharp valley .. . 138 

11.1 Two-dimensional optimization problem · 238 

14.1 Function JB(x) of Branin ....... . · 337 
14.2 Function JL(x) of Levy with about 700 local minima · 337 
14.3 Six-Hump Camel-Back function ........... . · 341 


