C++ Toolbox for Verified Computing I

R. Hammer M. Hocks U. Kulisch D. Ratz

# C++ Toolbox for Verified Computing I

# **Basic Numerical Problems**

Theory, Algorithms, and Programs

With 29 Figures



Prof. Dr. Ulrich Kulisch Dr. Rolf Hammer Dr. Matthias Hocks Dr. Dietmar Ratz Institut für Angewandte Mathematik Universität Karlsruhe D-76128 Karlsruhe

Cover figure: Function of Levy (see also page 337)

Mathematics Subject Classification (1991): 65-01, 65-04, 65F, 65G10, 65H, 65K

#### ISBN-13:978-3-642-79653-1

Library of Congress Cataloging-in-Publication Data C++ toolbox for verified computing: theory, algorithms, and programs R.Hammer [et al.]. p.cm. - Includes bibliographical references and index. Contents: v. 1. Basic numerical problems. ISBN-13:978-3-642-79653-1 e-ISBN-13:978-3-642-79651-7 DOI: 10.1007/978-3-642-79651-7 1. C++ (Computer program language) I. Hammer, (Rolf), 1961- . QA76.73.C153C18 1995 519.4'0285'5133--dc20 95-10173 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro-film or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1995 Softcover reprint of the hardcover 1st edition 1995

The copyright for the computer programs in this publication is owned by the authors.

The use of general descriptive names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Disclaimer/Legal Matters: Springer-Verlag and the authors make no warranties with respect to the adequacy of this book or the programs which it describes for any particular purpose or with respect to its adequacy to produce any particular result. We make no warranties, express or implied, that the programs contained in this volume are free of error, or are consistent with any particular standard of merchantability, or that they will meet your requirements for any particular application. They should not be relied on for solving a problem whose incorrect solution could result in injury to a person or loss of property. If you do use the programs in such a manner, it is at your own risk.

In no event shall Springer-Verlag or the authors be liable for special, direct, indirect or consequential damages, losses, costs, charges, claims, demands or claim for lost profits, fees or expenses of any nature or kind.

#### Preface

Our aim in writing this book was to provide an extensive set of C++ programs for solving basic numerical problems with *verification of the results*. This C++ Toolbox for Verified Computing I is the C++ edition of the Numerical Toolbox for Verified Computing I. The programs of the original edition were written in PASCAL-XSC, a PASCAL eXtension for Scientific Computation. Since we published the first edition we have received many requests from readers and users of our tools for a version in C++.

We take the view that C++ is growing in importance in the field of numerical computing. C++ includes C, but as a typed language and due to its modern concepts, it is superior to C. To obtain the degree of efficiency that PASCAL-XSC provides, we used the C-XSC library. C-XSC is a C++ class library for eXtended Scientific Computing. C++ and the C-XSC library are an adequate alternative to special XSC-languages such as PASCAL-XSC or ACRITH-XSC. A shareware version of the C-XSC library and the sources of the toolbox programs are freely available via anonymous ftp or can be ordered against reimbursement of expenses.

The programs of this book do not require a great deal of insight into the features of C++. Particularly, object oriented programming techniques are not required. However, the reader should be familiar with writing programs in a high-level computer language such as PASCAL, C, or FORTRAN. This book is particularly useful for those programmers who have already worked with the PASCAL-XSC edition but have only little knowledge in the C++ language. For those readers our book may be a source of inspiration when switching from PASCAL to C++.

We want to thank the readers of the original version of this book for their overwhelmingly positive comments. We incorporated some minor modifications in our algorithms which take into account the highly valuable suggestions and comments we received from numerous readers, as well as our own experience while using the toolbox. Some errors and misprints in the original edition have now been corrected. Nevertheless, we encourage readers, especially those of this C++ edition, to keep on communicating error reports to us.

Special thanks to Andreas Wiethoff who supported us in all questions concerning C++ and the C-XSC library. Last but not least, we wish to express again our appreciation to all colleagues whose advice helped produce the original edition, particularly those mentioned in the following preface of the PASCAL-XSC edition.

Karlsruhe, December 1994

#### Preface to the PASCAL-XSC Edition

As suggested by the title of this book Numerical Toolbox for Verified Computing, we present an extensive set of sophisticated tools to solve basic numerical problems with a verification of the results. We use the features of the scientific computer language PASCAL-XSC to offer modules that can be combined by the reader to his/her individual needs. Our overriding concern is reliability – the automatic verification of the result a computer returns for a given problem. All algorithms we present are influenced by this central concern. We must point out that there is no relationship between our methods of numerical result verification and the methods of program verification to prove the correctness of an implementation for a given algorithm.

This book is the first to offer a general discussion on

- arithmetic and computational reliability,
- analytical mathematics and verification techniques,
- algorithms, and
- (most importantly) actual implementations in the form of working computer routines.

Our task has been to find the right balance among these ingredients for each topic. For some topics, we have placed a little more emphasis on the algorithms. For other topics, where the mathematical prerequisites are universally held, we have tended towards more in-depth discussion of the nature of the computational algorithms, or towards practical questions of implementation. For all topics, we present examples, exercises, and numerical results demonstrating the application of the routines presented.

The different chapters of this volume require different levels of knowledge in numerical analysis. Most numerical toolboxes have, after all, tools at varying levels of complexity. Chapters 2, 3, 4, 5, 6, and 10 are suitable for an advanced undergraduate course on numerical computation for science or engineering majors. Other chapters range from the level of a graduate course to that of a professional reference. An attractive feature of this approach is that you can use the book at increasing levels of sophistication as your experience grows. Even inexperienced readers can use our most advanced routines as black boxes. Having done so, these readers can go back and learn what secrets are inside.

The central theme in this book is that practical methods of numerical computation can be simultaneously efficient, clever, clear, and (most importantly) reliable. We firmly reject the alternative viewpoint that such computational methods must necessarily be so obscure and complex as to be useful only in "black box" form where you have to believe in any calculated result.

This book introduces many computational verification techniques. We want to teach you to take apart these black boxes and to put them back together again, modifying them to suit your specific needs. We assume that you are mathematically literate, i.e. that you have the normal mathematical preparation associated with an undergraduate degree in a mathematical, computational, or physical science, or engineering, or economics, or a quantitative social science. We assume that you know how to program a computer and that you have some knowledge of scientific computation, numerical analysis, or numerical methods. We do not assume that you have any prior formal knowledge of numerical verification or any familiarity with interval analysis. The necessary concepts are introduced.

Volume 1 of *Numerical Toolbox for Verified Computing* provides algorithms and programs to solve basic numerical problems using automatic result verification techniques.

Part I contains two introductory chapters on the features of the scientific computer language PASCAL-XSC and on the basics and terminology of interval arithmetic. Within these chapters, the important correlation between the arithmetic capability and computational accuracy and mathematical fixed-point theory is also discussed.

Part II addresses one-dimensional problems: evaluation of polynomials and general arithmetic expressions, nonlinear root-finding, automatic differentiation, and optimization. Even though only one-dimensional problems treated in this part, the verification methods sometimes require multi-dimensional features like vector or matrix operations.

In Part III, we present routines to solve multi-dimensional problems such as linear and nonlinear systems of equations, linear and global optimization, and automatic differentiation for gradients, Hessians, and Jacobians.

Further volumes of Numerical Toolbox for Verified Computing are in preparation covering computational methods in the field of linear systems of equations for complex, interval, and complex interval coefficients, sparse linear systems, eigenvalue problems, matrix exponential, quadrature, automatic differentiation for Taylor series, initial value, boundary value and eigenvalue problems of ordinary differential equations, and integral equations. Editions of the program source code of this volume in the C++ computer language are also in preparation.

Some of the subjects that we cover in detail are not usually found in standard numerical analysis texts. Although this book is intended primarily as a reference text for anyone wishing to apply, modify, or develop routines to obtain mathematically certain and reliable results, it could also be used as a textbook for an advanced course in scientific computation with automatic result verification.

We express our appreciation to all our colleagues whose comments on our book were constructive and encouraging, and we thank our students for their help in testing our routines, modules, and programs. We are very grateful to Prof. Dr. George Corliss (Marquette University, Milwaukee, USA) who helped to polish the text and the contents. His comments and advice based on his numerical and computational experience greatly improved the presentation of our tools for Verified Computing.

Karlsruhe, September 1993

The Authors

#### The computer programs in this book

and a shareware version of the C-XSC library are available in several machinereadable formats. To purchase diskettes in IBM-PC compatible format, use the order form at the end of the book. The programs and the library are also available by anonymous ftp from

iamk4515.mathematik.uni-karlsruhe.de (129.13.129.15)

in subdirectory

pub/toolbox/cxsc.

Technical questions, corrections, and requests for information on other available formats and software products should be directed to Numerical Toolbox Software, Institut für Angewandte Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, e-mail: toolbox@iampc4.mathematik.uni-karlsruhe.de.

### Table of Contents

| 1        | Intr | oduction                                                           |
|----------|------|--------------------------------------------------------------------|
|          | 1.1  | Advice for Quick Reading 1                                         |
|          | 1.2  | Structure of the Book                                              |
|          | 1.3  | Typography                                                         |
|          | 1.4  | Algorithmic Notation                                               |
|          | 1.5  | Implementation                                                     |
|          | 1.6  | Computational Environment                                          |
|          | 1.7  | Why Numerical Result Verification?                                 |
|          |      | 1.7.1 A Brief History of Computing                                 |
|          |      | 1.7.2 Arithmetic on Computers 8                                    |
|          |      | 1.7.3 Extensions of Ordinary Floating-Point Arithmetic 9           |
|          |      | 1.7.4 Scientific Computation with Automatic Result Verification 11 |
|          |      | 1.7.5 Program Verification versus Numerical Verification 14        |
| I        | Prel | iminaries                                                          |
|          |      |                                                                    |
| <b>2</b> | The  | Features of C-XSC 17                                               |
|          | 2.1  | Data Types, Predefined Operators, and Functions                    |
|          | 2.2  | Vector and Matrix Handling 21                                      |
|          | 2.3  | Dot Product Expressions                                            |
|          | 2.4  | Input and Output                                                   |
|          | 2.5  | Data Conversion                                                    |
|          | 2.6  | Predefined Modules                                                 |
|          | 2.7  | C-XSC or Other Libraries?                                          |
| 3        | Mat  | hematical Preliminaries                                            |
|          | 3.1  | Real Interval Arithmetic                                           |
|          | 3.2  | Complex Interval Arithmetic                                        |
|          | 3.3  | Extended Interval Arithmetic 39                                    |
|          | 3.4  | Interval Vectors and Matrices 41                                   |
|          | 3.5  | Floating-Point Arithmetic                                          |
|          | 3.6  | Floating-Point Interval Arithmetic                                 |
|          | 3.7  | The Problem of Data Conversion 46                                  |
|          | 3.8  | Principles of Numerical Verification                               |

#### xii Table of Contents

| II | One  | e-Dimensional Problems                                                                                                   |
|----|------|--------------------------------------------------------------------------------------------------------------------------|
| 4  | Eval | luation of Polynomials                                                                                                   |
|    | 4.1  | Theoretical Background                                                                                                   |
|    |      | 4.1.1 Description of the Problem                                                                                         |
|    |      | 4.1.2 Iterative Solution                                                                                                 |
|    | 4.2  | Algorithmic Description                                                                                                  |
|    | 4.3  | Implementation and Examples                                                                                              |
|    | 1.0  | 431 C++ Program Code                                                                                                     |
|    |      | 4 3 1 1 Module rpoly                                                                                                     |
|    |      | 4.3.1.2 Module rpeval 63                                                                                                 |
|    |      | 4.3.2 Examples 65                                                                                                        |
|    |      | 4.3.3 Restrictions and Hints 68                                                                                          |
|    | 1 1  | Fvercises 68                                                                                                             |
|    | 4.4  | Beforences and Further Beading 68                                                                                        |
|    | 4.0  | References and Further Reading                                                                                           |
| 5  | Aut  | omatic Differentiation                                                                                                   |
|    | 5.1  | Theoretical Background                                                                                                   |
|    | 5.2  | Algorithmic Description                                                                                                  |
|    | 5.3  | Implementation and Examples                                                                                              |
|    | 0.0  | $5.3.1$ C++ Program Code $\ldots$ 74                                                                                     |
|    |      | 5.3.1.1 Module ddf_ari                                                                                                   |
|    |      | 5.3.2 Examples                                                                                                           |
|    |      | 5.3.3 Restrictions and Hints                                                                                             |
|    | 5.4  | Exercises                                                                                                                |
|    | 5.5  | References and Further Reading                                                                                           |
| 6  | Nor  | alinear Equations in One Variable                                                                                        |
| U  | 6 1  | Theoretical Background                                                                                                   |
|    | 6.2  | Algorithmic Description 95                                                                                               |
|    | 6.3  | Implementation and Examples 98                                                                                           |
|    | 0.5  | $\begin{array}{c} \text{miplementation and Examples} \\ 6.3.1  C + + P_{\text{rogram}}  Code \\ \end{array} $            |
|    |      | 6.3.1.1. Modulo vi pri                                                                                                   |
|    |      | $6.3.1.2 \qquad \text{Module plfzero} \qquad \qquad 103$                                                                 |
|    |      | 6.2.2 Everyple 108                                                                                                       |
|    |      | 6.2.2 Example                                                                                                            |
|    | C A  | D.5.5 Restrictions and mints                                                                                             |
|    | 0.4  | $Exercises \dots $ |
|    | 6.5  | References and Further Reading                                                                                           |
| 7  | Glo  | bal Optimization                                                                                                         |
|    | 7.1  | Theoretical Background                                                                                                   |
|    |      | 7.1.1 Midpoint Test                                                                                                      |
|    |      | 7.1.2 Monotonicity Test                                                                                                  |
|    |      | 7 1.3 Concavity Test                                                                                                     |
|    |      | 7 1 4 Interval Newton Step                                                                                               |
|    |      | 7.1.5 Verification 117                                                                                                   |
|    |      |                                                                                                                          |

| Table | of | Contents | xiii |
|-------|----|----------|------|
|-------|----|----------|------|

|    | 7.2          | Algorithmic Description                       |
|----|--------------|-----------------------------------------------|
|    | 7.3          | Implementation and Examples                   |
|    |              | 7.3.1 C++ Program Code                        |
|    |              | 7.3.1.1 Module lst1_ari                       |
|    |              | 7.3.1.2 Module gop1                           |
|    |              | 7.3.2 Examples                                |
|    |              | 7.3.3 Restrictions and Hints                  |
|    | 7.4          | Exercises                                     |
|    | 7.5          | References and Further Reading                |
| 8  | Eval         | uation of Arithmetic Expressions              |
|    | 8.1          | Theoretical Background                        |
|    |              | 8.1.1 A Nonlinear Approach                    |
|    | 8.2          | Algorithmic Description                       |
|    | 8.3          | Implementation and Examples                   |
|    |              | 8.3.1 C++ Program Code                        |
|    |              | 8.3.1.1 Module expreval                       |
|    |              | 8.3.2 Examples                                |
|    |              | 8.3.3 Restrictions, Hints, and Improvements   |
|    | 8.4          | Exercises                                     |
|    | 8.5          | References and Further Reading                |
| 9  | Zero         | os of Complex Polynomials                     |
|    | 9.1          | Theoretical Background                        |
|    |              | 9.1.1 Description of the Problem              |
|    |              | 9.1.2 Iterative Approach                      |
|    | 9.2          | Algorithmic Description                       |
|    | 9.3          | Implementation and Examples                   |
|    |              | 9.3.1 C++ Program Code                        |
|    |              | 9.3.1.1 Module cpoly                          |
|    |              | 9.3.1.2 Module cipoly                         |
|    |              | 9.3.1.3 Module cpzero                         |
|    |              | 9.3.2 Example                                 |
|    |              | 9.3.3 Restrictions and Hints                  |
|    | 9.4          | Exercises                                     |
|    | 9.5          | References and Further Reading                |
| II | I M          | ılti-Dimensional Problems                     |
| 10 | Line         | par Systems of Equations                      |
| 10 | 10.1         | Theoretical Background                        |
|    | 10.1         | 10.1.1 A Newton-like Method                   |
|    |              | 10.1.2 The Residual Iteration Scheme 190      |
|    |              | 10.1.3 How to Compute the Approximate Inverse |
|    | 10.2         | Algorithmic Description                       |
|    | 10.2<br>10.3 | Implementation and Examples                   |
|    |              |                                               |

|          |                                                                                   | 10.3.1 C++ Program Code $\ldots \ldots \ldots$                                                                                                                                                                                                                                                                                                                                                                                     | 195                                                                                                                 |
|----------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|          |                                                                                   | 10.3.1.1 Module matinv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 195                                                                                                                 |
|          |                                                                                   | 10.3.1.2 Module linsys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 199                                                                                                                 |
|          |                                                                                   | 10.3.2 Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 205                                                                                                                 |
|          |                                                                                   | 10.3.3 Restrictions and Improvements                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 207                                                                                                                 |
|          | 10.4                                                                              | Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 207                                                                                                                 |
|          | 10.5                                                                              | References and Further Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 209                                                                                                                 |
| 11       | Line                                                                              | ear Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 210                                                                                                                 |
|          | 11.1                                                                              | Theoretical Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 210                                                                                                                 |
|          |                                                                                   | 11.1.1 Description of the Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210                                                                                                                 |
|          |                                                                                   | 11.1.2 Verification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 211                                                                                                                 |
|          | 11.2                                                                              | Algorithmic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 213                                                                                                                 |
|          | 11.3                                                                              | Implementation and Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 219                                                                                                                 |
|          |                                                                                   | 11.3.1 C++ Program Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 219                                                                                                                 |
|          |                                                                                   | 11.3.1.1 Module set_ari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 219                                                                                                                 |
|          |                                                                                   | 11.3.1.2 Module lop_ari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 223                                                                                                                 |
|          |                                                                                   | 11.3.1.3 Module rev_simp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 227                                                                                                                 |
|          |                                                                                   | 11.3.1.4 Module lop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 230                                                                                                                 |
|          |                                                                                   | 11.3.2 Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 238                                                                                                                 |
|          |                                                                                   | 11.3.3 Restrictions and Hints                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 242                                                                                                                 |
|          | 11.4                                                                              | Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                                                                                                                 |
|          | 11.5                                                                              | References and Further Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 243                                                                                                                 |
|          |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                     |
| 12       | Aut                                                                               | omatic Differentiation for Gradients, Jacobians, and Hessians                                                                                                                                                                                                                                                                                                                                                                                                                                            | 244                                                                                                                 |
| 12       | <b>Aut</b><br>12.1                                                                | omatic Differentiation for Gradients, Jacobians, and Hessians<br>Theoretical Background                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{244}{244}$                                                                                                   |
| 12       | <b>Aut</b><br>12.1<br>12.2                                                        | omatic Differentiation for Gradients, Jacobians, and Hessians<br>Theoretical Background                                                                                                                                                                                                                                                                                                                                                                                                                  | $244 \\ 244 \\ 247$                                                                                                 |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and Hessians<br>Theoretical Background                                                                                                                                                                                                                                                                                                                                                                                                                  | 244<br>244<br>247<br>249                                                                                            |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and HessiansTheoretical BackgroundAlgorithmic DescriptionImplementation and Examples12.3.1C++Program Code                                                                                                                                                                                                                                                                                                                                               | 244<br>244<br>247<br>249<br>249                                                                                     |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1   C++ Program Code   12.3.1.1   Module hess_ari                                                                                                                                                                                                                                                                                                  | 244<br>244<br>247<br>249<br>249<br>249                                                                              |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1   C++ Program Code   12.3.1.1   Module hess_ari   12.3.1.2                                                                                                                                                                                                                                                                                       | 244<br>247<br>249<br>249<br>249<br>249<br>269                                                                       |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1   C++ Program Code   12.3.1.1   Module hess_ari   12.3.2   Module grad_ari                                                                                                                                                                                                                                                                       | 244<br>247<br>249<br>249<br>249<br>249<br>269<br>285                                                                |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1   C++ Program Code   12.3.1.1   Module hess_ari   12.3.2   Module grad_ari   12.3.3   Restrictions and Hints                                                                                                                                                                                                                                     | 244<br>247<br>249<br>249<br>249<br>249<br>269<br>285<br>291                                                         |
| 12       | <b>Aut</b><br>12.1<br>12.2<br>12.3                                                | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1   C++ Program Code   12.3.1.1   Module hess_ari   12.3.2   Examples   12.3.3   Restrictions and Hints   Exercises                                                                                                                                                                                                                                | 244<br>247<br>249<br>249<br>249<br>269<br>269<br>285<br>291<br>291                                                  |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.4                                       | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.1.2 Module grad_ari   12.3.3 Restrictions and Hints   Exercises   References and Further Reading                                                                                                                                                                                              | 244<br>247<br>249<br>249<br>249<br>269<br>285<br>291<br>291<br>291<br>292                                           |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.4<br>12.5                               | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.2 Examples   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Innear Systems of Equations                                                                                                                                                                         | 244<br>244<br>247<br>249<br>249<br>269<br>285<br>291<br>291<br>292<br>293                                           |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br>Nor<br>13.1                        | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.1.2 Module grad_ari   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Theoretical Background                                                                                                                                                                     | 244<br>247<br>249<br>249<br>249<br>269<br>285<br>291<br>291<br>292<br>293<br>293                                    |
| 12<br>13 | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br><b>Nor</b><br>13.1                 | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.1.2 Module grad_ari   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Theoretical Background   13.1.1 Gauss-Seidel Iteration                                                                                                                                     | 244<br>247<br>249<br>249<br>269<br>285<br>291<br>291<br>292<br>293<br>293<br>293<br>294                             |
| 12<br>13 | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br><b>Nor</b><br>13.1<br>13.2         | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.1.2 Module grad_ari   12.3.2 Examples   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Theoretical Background   13.1.1 Gauss-Seidel Iteration                                                                                                                   | 244<br>247<br>249<br>249<br>269<br>285<br>291<br>292<br>293<br>293<br>293<br>294<br>296                             |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br>Nor<br>13.1<br>13.2<br>13.3        | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.1.2 Module grad_ari   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Theoretical Background   13.1.1 Gauss-Seidel Iteration   Algorithmic Description   Implementation and Examples                                                                             | 244<br>244<br>247<br>249<br>249<br>269<br>285<br>291<br>291<br>292<br>293<br>293<br>293<br>293<br>294<br>296<br>300 |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br>Nor<br>13.1<br>13.2<br>13.3        | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.2 Examples   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Theoretical Background   13.1.1 Gauss-Seidel Iteration   Algorithmic Description   Implementation and Examples                                                                                      | 244<br>244<br>247<br>249<br>269<br>285<br>291<br>291<br>292<br>293<br>293<br>293<br>294<br>296<br>300<br>300        |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br><b>Nor</b><br>13.1<br>13.2<br>13.3 | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.2 Examples   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   Theoretical Background   13.1.1 Gauss-Seidel Iteration   Algorithmic Description   Implementation and Examples   13.1.1 Gauss-Seidel Iteration   Implementation and Examples   13.1.1 Module ninsys | 244<br>244<br>247<br>249<br>249<br>285<br>291<br>291<br>292<br>293<br>293<br>294<br>296<br>300<br>300<br>301        |
| 12       | Aut<br>12.1<br>12.2<br>12.3<br>12.4<br>12.5<br>Nor<br>13.1<br>13.2<br>13.3        | omatic Differentiation for Gradients, Jacobians, and Hessians   Theoretical Background   Algorithmic Description   Implementation and Examples   12.3.1 C++ Program Code   12.3.1.1 Module hess_ari   12.3.1.2 Module grad_ari   12.3.3 Restrictions and Hints   Exercises   References and Further Reading   13.1.1 Gauss-Seidel Iteration   Algorithmic Description   Implementation and Examples   13.3.1 C++ Program Code   13.3.1 Module nlinsys   13.3.2 Example                                   | 244<br>247<br>249<br>249<br>269<br>285<br>291<br>292<br>293<br>293<br>293<br>294<br>296<br>300<br>300<br>301<br>307 |

|              | 13.4            | Exercises                                                                                                                                 |
|--------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|              | 13.5            | References and Further Reading                                                                                                            |
|              |                 |                                                                                                                                           |
| 14           | Glo             |                                                                                                                                           |
|              | 14.1            | Theoretical Background                                                                                                                    |
|              |                 | 14.1.1 Midpoint lest                                                                                                                      |
|              |                 | 14.1.2 Monotonicity lest                                                                                                                  |
|              |                 | 14.1.3 Concavity Test                                                                                                                     |
|              |                 | 14.1.4 Interval Newton Step                                                                                                               |
|              | 14.0            | $14.1.5  \text{Verification}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                            |
|              | 14.2            | Algorithmic Description                                                                                                                   |
|              | 14.3            | Implementation and Examples                                                                                                               |
|              |                 | $14.3.1  C++ \text{ Program Code}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $                                       |
|              |                 | $14.3.1.1  Module  lst_arr 1 \dots \dots$ |
|              |                 | 14.3.1.2 Module gop                                                                                                                       |
|              |                 | 14.3.2 Examples                                                                                                                           |
|              | 1 4 4           | 14.3.3 Restrictions and Hints                                                                                                             |
|              | 14.4            | $Exercises \dots $                  |
|              | 14.5            | References and Further Reading                                                                                                            |
| A            | open            | dix                                                                                                                                       |
|              |                 |                                                                                                                                           |
| $\mathbf{A}$ | Util            | ity Modules                                                                                                                               |
|              | A.1             | Module r_util                                                                                                                             |
|              | A.2             | Module i_util $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 343$                                                        |
|              | A.3             | Module ci_util                                                                                                                            |
|              | A.4             | Module mv_util                                                                                                                            |
|              | A.5             | Module mvi_util                                                                                                                           |
| р            | A 1 1           |                                                                                                                                           |
| Б            | Ар              | adetical List of Modules                                                                                                                  |
| С            | $\mathbf{List}$ | of Special Symbols                                                                                                                        |
| Bi           | bliog           | raphy                                                                                                                                     |
| In           | dex             |                                                                                                                                           |

## List of Figures

| 1.1                                                                         | An interval evaluation provides the guarantee for positive $f$                                                                                                                                                                                      |     | • | •               | 11                                                       |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|-----------------|----------------------------------------------------------|
| 2.1                                                                         | Hierarchy of the data types and header files of the C–XSC library                                                                                                                                                                                   |     | • |                 | 27                                                       |
| 3.1<br>3.2<br>3.3<br>3.4<br>3.5<br>3.6<br>3.7<br>3.8<br>3.9<br>3.10<br>3.11 | Attributes of an interval $[x]$                                                                                                                                                                                                                     | • • |   | • • • • • • • • | 31<br>32<br>36<br>38<br>39<br>41<br>43<br>45<br>52<br>52 |
| $4.1 \\ 4.2$                                                                | Polynomial $p(t)$ for $t \in [1.9995, 2.0005]$                                                                                                                                                                                                      | •   |   | •               | $\begin{array}{c} 65\\ 66\end{array}$                    |
| $6.1 \\ 6.2 \\ 6.3$                                                         | Interval Newton step with $0 \notin f'([x]^{(k)})$<br>Extended interval Newton step with $0 \in f'([x]^{(k)})$<br>Function $f(x) = e^{-3x} - \sin^3 x$                                                                                              | •   | • |                 | 94<br>94<br>108                                          |
| $7.1 \\ 7.2 \\ 7.3 \\ 7.4 \\ 7.5 \\ 7.6 \\ 7.7 \\$                          | Midpoint testMonotonicity testConcavity testFunction $f$ (test function $f_4$ in [93])Shubert's function $g$ (test function $f_3$ in [93])Function $h$ (test function $f_1$ in [93]) with several local minimaTest function $r$ with a sharp valley | •   | • |                 | 114<br>115<br>116<br>134<br>135<br>138<br>138            |
| 11.1                                                                        | Two-dimensional optimization problem                                                                                                                                                                                                                |     | • |                 | 238                                                      |
| $14.1 \\ 14.2 \\ 14.3$                                                      | Function $f_B(x)$ of Branin                                                                                                                                                                                                                         | •   | • | •               | 337<br>337<br>341                                        |