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Foreword 

It is a great satisfaction for a mathematician to witness the growth and expansion 
of a theory in which he has taken some part during its early years. 

When H. Weyl coined the words "classical groups", foremost in his mind 
were their connections with invariant theory, which his famous book helped to 
revive. Although his approach in that book was deliberately algebraic, his interest 
in these groups directly derived from his pioneering study of the special case in 
which the scalars are real or complex numbers, where for the first time he injected 
Topology into Lie theory. But ever since the definition of Lie groups, the analogy 
between simple classical groups over finite fields and simple classical groups over 
IR or C had been observed, even if the concept of "simplicity" was not quite the 
same in both cases. With the discovery of the exceptional simple complex Lie 
algebras by Killing and E. Cartan, it was natural to look for corresponding 
groups over finite fields, and already around 1900 this was done by Dickson for 
the exceptional Lie algebras G 2 and E6 • However, a deep reason for this 
parallelism was missing, and it is only Chevalley who, in 1955 and 1961, 
discovered that to each complex simple Lie algebra corresponds, by a uniform 
process, a group scheme (fj over the ring Z of integers, from which, for any field K, 
could be derived a group (fj(K). Furthermore, the Chevalley construction 
provided a general prooffor all the "simplicity" theorems, obtained until then by 
ad hoc methods in each particular case. 

Classical groups can be defined when the scalars only form a ring 
(commutative in most cases). The methods used in their study when the scalars 
form a field can be slightly extended to local rings; but for more general rings, they 
don't apply any more, and new ideas were needed. They were brilliantly provided 
by O'Meara; he grouped around him at Notre Dame a school of younger 
mathematicians who developed his methods in several directions, and elucidated 
many properties of the structure of classical groups over rings and of their 
isomorphisms. More recently, unexpected connections of classical groups with 
K-theory have been discovered; one of the most active participants in their 
development has been A. Hahn. All mathematicians interested in classical groups 
should be grateful to these two outstanding investigators for having brought 
together old and new results (many of them their own) into a superbly organized 
whole. I am confident that their book will remain for a long time the standard 
reference in the theory. J. Dieudonne 
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