Grundlehren der mathematischen Wissenschaften 291

A Series of Comprehensive Studies in Mathematics

Editors

M. Artin S. S. Chern J. Coates J. M. Fröhlich H. Hironaka F. Hirzebruch L. Hörmander S. MacLane C. C. Moore J. K. Moser M. Nagata W. Schmidt D. S. Scott Ya. G. Sinai J. Tits M. Waldschmidt S. Watanabe

Managing Editors

M. Berger B. Eckmann S. R. S. Varadhan

Alexander J. Hahn O. Timothy O'Meara

The Classical Groups and K-Theory

Foreword by J. Dieudonné

Springer-Verlag Berlin Heidelberg GmbH Alexander J. Hahn Department of Mathematics University of Notre Dame Notre Dame, IN 46556, USA

O. Timothy O'Meara Provost University of Notre Dame Notre Dame, IN 46556, USA

Mathematics Subject Classification (1980): 16-XX, 10 Cxx, 20-XX

ISBN 978-3-642-05737-3

Library of Congress Cataloging-in-Publication Data Hahn, Alexander J., 1943– The classical groups and K-theory / Alexander J. Hahn, O. Timothy O'Meara; foreword by J. Dieudonné. p. cm. – (Grundlehren der mathematischen Wissenschaften; 291) Bibliography: p. Includes indexes. ISBN 978-3-642-05737-3 ISBN 978-3-662-13152-7 (eBook) DOI 10.1007/978-3-662-13152-7 1. Linear algebraic groups. 2. K-theory. I. O'Meara, O.T. (Onorato Timothy), 1928–. II. Title. III. Series. QA171.H235 1989 512'.55-dc 19 88-11958 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989 Originally published by Springer-Verlag Berlin Heidelberg New York in 1989 Softcover reprint of the hardcover 1st edition 1989 Typesetting: Thomson Press (India) Ltd., New Delhi 2141/3140-543210 Printed on acid-free paper

To Marianne and Jean

Foreword

It is a great satisfaction for a mathematician to witness the growth and expansion of a theory in which he has taken some part during its early years.

When H. Weyl coined the words "classical groups", foremost in his mind were their connections with invariant theory, which his famous book helped to revive. Although his approach in that book was deliberately algebraic, his interest in these groups directly derived from his pioneering study of the special case in which the scalars are real or complex numbers, where for the first time he injected Topology into Lie theory. But ever since the definition of Lie groups, the analogy between simple classical groups over finite fields and simple classical groups over \mathbb{R} or \mathbb{C} had been observed, even if the concept of "simplicity" was not quite the same in both cases. With the discovery of the exceptional simple complex Lie algebras by Killing and E. Cartan, it was natural to look for corresponding groups over finite fields, and already around 1900 this was done by Dickson for the exceptional Lie algebras G_2 and E_6 . However, a deep reason for this parallelism was missing, and it is only Chevalley who, in 1955 and 1961, discovered that to each complex simple Lie algebra corresponds, by a uniform process, a group scheme \mathfrak{G} over the ring \mathbb{Z} of integers, from which, for any field K, could be derived a group $\mathfrak{G}(\mathbf{K})$. Furthermore, the Chevallev construction provided a general proof for all the "simplicity" theorems, obtained until then by ad hoc methods in each particular case.

Classical groups can be defined when the scalars only form a ring (commutative in most cases). The methods used in their study when the scalars form a field can be slightly extended to local rings; but for more general rings, they don't apply any more, and new ideas were needed. They were brilliantly provided by O'Meara; he grouped around him at Notre Dame a school of younger mathematicians who developed his methods in several directions, and elucidated many properties of the structure of classical groups over rings and of their isomorphisms. More recently, unexpected connections of classical groups with K-theory have been discovered; one of the most active participants in their development has been A. Hahn. All mathematicians interested in classical groups should be grateful to these two outstanding investigators for having brought together old and new results (many of them their own) into a superbly organized whole. I am confident that their book will remain for a long time the standard reference in the theory. J. Dieudonné

Acknowledgements

We wish to acknowledge the efforts of many individuals who have contributed to this volume.

Our deep appreciation goes to Jean Dieudonné for his personal interest and support from the very beginning of this project and also for the inspiration that came from his work. He, more than anyone else, created the modern algebraic theory of the classical groups.

We also thank: Wilberd van der Kallen and Kam Wing Leung for reading large portions of the manuscript and for the corrections and other improvements which they suggested in the process; many mathematicians whose ideas and comments have been incorporated into this volume, especially Tony Bak, Keith Dennis, Vinay Deodhar, Don James, Manfred Kolster, Zun-xian Li, Ottmar Loos, Bernie McDonald, Manuel Ojanguren, Carl Riehm, Jacques Tits, Leonid Vaserstein, G. E. Wall, and Zhe-xian Wan; and our colleagues in the Mathematics Department at Notre Dame, especially George Kolettis, Karl Kronstein, Kok-Wee Phan, Barth Pollak, Larry Taylor, Bruce Williams, and Warren Wong, for the stimulating and collegial environment that they have provided over the years, and Hubert O'Driscoll, Al Hibbard, and Annette Pilkington for their proof reading efforts.

We are most grateful to Marianne Hahn for her wonderful job with the typing of the original manuscript; to the people at the Springer-Verlag in Heidelberg, for their professionalism and patience with the editing; and to Thomson Press, New Delhi, India for the typesetting.

Finally, to Theodore M. Hesburgh, President Emeritus of the University of Notre Dame: thank you very much for your constant interest in our project and the continued support and encouragement that you gave it.

March 21, 1989

A. J. Hahn and O. T. O'Meara

Table of Contents

Fore	word (by J. Dieudonné)	vii
Ackı	nowledgements	ix
Intro	oduction	1
Nota	ation and Conventions	3
Chaj	pter 1. General Linear Groups, Steinberg Groups, and K-Groups .	5
1.1.	Rings, Modules, and Groups1.1A.Rings and Modules1.1B.Miscellaneous Group Theory	5 5 12
1.2.	Linear Groups and Linear Transformations1.2A.The General Linear Group $GL(M)$ and Related Groups1.2B.Residual and Fixed Modules1.2C.Elementary Transvections and the Group $E_n(R)$ 1.2D.Cartesian Squares1.2E.The Linear Congruence Groups	18 18 20 23 30 33
1.3.	The Stable Linear Groups and K_1 1.3A.Commutators of Linear Groups1.3B.The Groups $GL(R)$ and $E(R)$, and K_1 1.3C.The Normal Subgroups of $GL(R)$	37 37 38 43
1.4.	The Linear Steinberg Groups1.4A. The Groups $St_n(R)$ and $St(R)$ 1.4B. Comparing $K_{2,n}(R)$ and $Cen St_n(R)$ 1.4C. Central Extensions of Groups1.4D. $St(R)$ as Universal Central Extension of $E(R)$ 1.4E. The Groups $W_n(R)$ and $H_n(R)$ 1.4F. The General Steinberg Group	45 45 47 49 52 55 60
1.5.	The K_2 -Groups 1.5A. Symbols in $K_{2,n}(R)$ 1.5B. A K_1 - K_2 Exact Sequence	61 61 65
Cha	pter 2. Linear Groups over Division Rings	68
2.1.	Basic Properties of the Linear Groups	68

	2.1A.	One-Dimensional Transformations	69
	2.1 B .	Generation Theorems for the Linear Groups	71
	2.1C.	Orders of the Finite Linear Groups	74
2.2.	The G	coups $E_n(V)$ and $SL_n(V)$	75
	2.2A.	The Dieudonné Determinant	75
	2.2B.	Iwasawa's Simplicity Criterion	78
	2.2C.	The Simplicity of the Group $E_n(V)/Cen E_n(V)$	79
	2.2D*.	Central Simple Algebras and the Norm One Group $SL_n(V)$	81
	2.2E*.	Is $SL_n(V) = E_n(V)$?	85
2.3.	Connec	ctions with K-Theory	88
	2.3A.	A Bruhat Decomposition and Presentations of the	
		Linear Groups	88
	2.3 B* .	The Theorems of Matsumoto and Merkurjev-Suslin	92
Chap	oter 3. Is	somorphism Theory for the Linear Groups	96
3.1.	Basic C	Concepts and Facts.	98
	3.1A.	The Standard Isomorphisms	98
	3.1 B .	Rings with Division Rings of Ouotients	101
	3.1C.	The Fundamental Theorem of Projective Geometry	104
3.2.	Full G	roups and Their Isomorphisms	106
	3.2A.	Full Groups	106
	3.2 B .	More Properties of Linear Transformations	110
	3.2C.	Action of an Isomorphism on Projective Transvections	115
	3.2D.	The Isomorphism Theorems	119
3.3*.	Results	over More General Rings	127
	3.3A*.	Morita Theory and Isomorphisms of Matrix Rings	127
	3.3 B* .	A Return to Domains	130
	3.3C*.	Description of Theorems and Proofs over More	
		General Rings	134
Chap	oter 4. L	inear Groups over General Classes of Rings	139
4.1.	The Sta	able Range Condition	141
	4.1A.	Big Modules and the Stable Range Condition	141
	4 .1 B .	Examples of Rings with Stable Range Condition	143
4.2.	The No	ormal Subgroup Structure of the Linear Groups	147
	4.2A.	Generalized Matrix Decompositions	147
	4.2B.	Linear Groups of Big Modules	150
	4.2C.	Commutators of Linear Groups	153
	4.2D.	Classification of Normal Subgroups	155
	4.2E*.	Stability for K_1 and K_2	160
4.3*.	The Co	ngruence Subgroup, Generation, and Presentation Problems	164
	4.3A*.	The Congruence Subgroup Problem	165

	4.3B*. 4.3C*.	Generation by Elementary Matrices and Finite Generation Presentations of the Linear Groups	172 177
Char	oter 5. U	Jnitary Groups, Unitary Steinberg Groups, and	
Unit	ary K-C	Groups	183
5.1.	Sesquil	inear, Hermitian, and Quadratic Forms	184
	5.1A.	Sesquilinear Forms.	184
	5.1B.	Hermitian Forms	188
	5.1C.	Form Rings and Generalized Quadratic Forms	190
	5.1D.	Quadratic Modules over Form Rings	195
5.2.	Unitar	Groups and Unitary Transformations	200
	5.2A.	Special Cases of Unitary Groups and the Traditional	201
	J. 2D .	Classical Groups	204
	5.2C.	Unitary Transformations	212
	5.2D.	Ideals in Form Rings and Unitary Congruence Groups	215
5.3.	The Hy	yperbolic Unitary Groups	221
	5.3A.	The Groups $U_{2n}(R, \Lambda)$ and $EU_{2n}(R, \Lambda)$	221
	5.3B.	Basic Properties of the Group $EU_{2n}(R, \Lambda)$	228
	5.3C.	The Homomorphisms T , T_+ , H, and F	235
	5.3D.	The Congruence Groups $U_{2n}(\mathfrak{a},\Gamma)$ and $EU_{2n}(\mathfrak{a},\Gamma)$	238
5.4.	The St	able Unitary Groups and KU_1	241
	5.4A.	Commutators of Unitary Groups	241
	5.4B.	The Stable Unitary Groups $U(R, \Lambda)$ and $EU(R, \Lambda)$	243
	5.4C. 5.4D	The Normal Subgroups of $U(R A)$	240
5 5	The II	nitary Steinberg Groups	256
5.5.	5 5A	The Groups StU ₂ $(R \Lambda)$ and StU $(R \Lambda)$	256
	5.5B.	The Hyperbolic and Forgetful Maps $\dots \dots \dots \dots$	259
	5.5C.	Comparing $KU_{2,2n}(R,\Lambda)$ and Cen $StU_{2n}(R,\Lambda)$	261
	5.5D.	$E_n(R)$ -Homomorphisms onto Λ_n and Λ_n^J	263
	5.5E.	StU(R, Λ) as Universal Central Extension of EU(R, Λ)	269
	5.5F*.	The Groups $WU_{2n}(R, \Lambda)$ and $HU_{2n}(R, \Lambda)$	273
5.6*.	The K	U ₂ -Groups	277
	5.6A*.	Symbols in $KU_{2,2n}(R, \Lambda)$.	277
	5.6B [↑] .	Grothendieck Groups, Witt Groups, and L-Groups	281
	5.6D*.	The Exact Sequence of Sharpe	280 289
Char	oter 6. I	Jnitary Groups over Division Rings	292
61	Forme	over Division Rings	204
0.1.	6.1A.	Form Parameters in Division Rings	294

	6.1 B .	J-Forms on Vector Spaces	295
	6.1C.	Quadratic Spaces	300
	6.1D.	Quadratic Spaces over Finite Form Rings	302
6.2.	Basic F	Properties of the Unitary Groups	307
	6.2A.	Residual Spaces of Unitary Transformations	308
	6.2B.	A Canonical J-Form on the Residual Space	311
	6.2C.	Witt's Theorems and the Witt Index	314
	6.2D.	Generation Theorems for the Unitary Groups	317
	6.2E.	The Finite Unitary Groups	322
6.3.	The G	$\operatorname{coup} \operatorname{EU}_n(V) \text{ for Isotropic } V \dots \dots$	325
	6.3A.	Isotropic Transvections in $EU_n(V)$	326
	6.3 B .	The Equality $EU_n(V) = EU_x(V)$ for Hyperbolic $V \dots \dots$	328
	6.3C.	The Centralizer of $EU_n(V)$	329
	6.3D.	The Action of $EU_n(V)$ on Isotropic Lines	331
	6.3E.	The Simplicity of the Group $EU_n(V)/Cen EU_n(V) \dots$	333
6.4.	The G	coups $U_n^+(V)$, $U_n'(V)$, and $SU_n(V)$	338
	6.4A.	The Spinor Norm Θ	339
	6.4 B .	The Group $U_n^+(V)$	344
	6.4C.	The Spinorial Kernel $U'_n(V)$	349
	6.4D.	Applications to $EU_n(V)$	354
	6.4E*.	The Unitary Norm One Group $SU_n(V)$	359
	6.4F*.	A Refinement of the Spinor Norm	362
	6.4G*.	Unitary Groups over Special Fields	364
6.5*.	Connec	ctions with Unitary K-Theory	369
	6.5A*.	The Groups $KU_{1,2n}(R,\Lambda)$	369
	6.5 B* .	A Bruhat Decomposition and Presentations of the	
		Hyperbolic Unitary Groups	377
	6.5C*.	$KU_{2,2n}(R,\Lambda)$ over Fields and the Exact Diagram	
		of Merkurjev-Suslin-Sharpe	377
Char	oter 7. C	Clifford Algebras and Orthogonal Groups over	• • • •
Com	mutativ	e Rings	381
7.1.	The Cl	ifford Algebra of a Quadratic Module	382
	7.1 A .	Definition, Existence, and Basic Properties	382
	7.1 B .	Gradings and Tensor Products	387
	7.1C.	The Clifford Algebra of a Free Quadratic Module	393
	7.1D.	The Generalized Quaternion Algebra	398
	7.1E.	Centers and Graded Centers	401
7.2.	Clifford	I, Spin, and Related Orthogonal Groups	405
	7.2A.	The Groups $CL(M)$, $CL^+(M)$, and $Spin(M)$	406
	7.2B.	The Groups $\operatorname{Epin}_{\mathfrak{X}}(M)$, $\operatorname{KSpin}_{1,2n}(R)$, and $\operatorname{KSpin}_{2,2n}(R)$	
		in the Hyperbolic Case	410
	7.2C*.	Bass' Theory of the Spinor Norm	417

7.3. Isomorphisms Between Classical Groups of Small Rank	425
7.3A. The Rank 3 Situation	427
7.3B. The Rank 4 Situation	430
7.3C*. The Situations of Rank 5, 6, and $8 \dots \dots \dots$	435
Chapter 8. Isomorphism Theory for the Unitary Groups	441
8.1. Basic Properties of Quadratic Spaces	443
8.1A. Some Elementary Concepts and Facts	443
8.1B. The Fundamental Theorem of Projective Geometry	446
8.1C. The Geometry of Totally Isotropic Subspaces	452
8.2. Full Orthogonal Groups and Their Isomorphisms	457
8.2A. Full Orthogonal Groups	458
8.2B. Elementary Abelian p-Groups in Orthogonal Groups	s 462
8.2C. More Properties of Eichler Transformations	465
8.2D. Centralizers and Double Centralizers	472
8.2E. Action of an Isomorphism on Projective Eichler	
Transformations	476
8.2F. The Isomorphisms of Full Groups in Dimensions No 8.2G*. Cayley Algebras and the Isomorphisms of Full Gro	t 8 482 ups in
Dimension 8	491
8.2H*. Isomorphism Theory for Saturated Orthogonal Grou	1ps 496
8.3*. Non-Orthogonal Full Groups and Their Isomorphisms	500
8.3A*. The Isomorphisms of Non-Orthogonal Full Unitary C 8.3B*. Non-Existence of Isomorphisms Between Full Group	iroups 501 ups
of Different Types	505
Chapter 9. Unitary Groups over General Classes of Form Rings	508
9.1*. The Normal Subgroup Structure of the Unitary Groups	508
9.1A*. Elementary Subgroups of the Unitary Groups	509
9.1B*. Classification of Normal Subgroups	514
9.1C*. Stability for KU_1 and KU_2	520
9.2*. The Congruence Subgroup, Generation, and Presentation Pro	oblems 528
9.2A*. The Congruence Subgroup Problem	529
9.2B*. Generation by Elementary Matrices and Finite Gene	ration 533
9.2C*. Presentations of Symplectic and Orthogonal Groups	539
Concluding Remarks	543
Bibliography	545
Index of Concepts	567
Index of Symbols	574