Die Grundlehren der mathematischen Wissenschaften

in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete

Band 138

Herausgegeben von

J. L. Doob · E. Heinz · F. Hirzebruch · E. Hopf · H. Hopf W. Maak · S. Mac Lane · W. Magnus · D. Mumford M. M. Postnikov · F. K. Schmidt · D. S. Scott · K. Stein

> *Geschäftsführende Herausgeber* B. Eckmann und B. L. van der Waerden

Wolfgang Hahn

Stability of Motion

Translated by

Arne P. Baartz

With 63 Figures

Springer-Verlag New York Inc. 1967

Professor Dr. phil. Wolfgang Hahn Technische Hochschule Graz Graz (Austria)

Professor Arne P. Baartz, Ph. D. University of Victoria Department of Mathematics, Victoria (British Columbia)

Geschaftsführende Herausgeber:

Professor Dr. B. Eckmann Eidgenössische Technische Hochschule Zürich

Professor Dr. B. L. van der Waerden Mathematisches Institut der Universität Zürich

ISBN 978-3-642-50087-9 ISBN 978-3-642-50085-5 (eBook) DOI 10.1007/978-3-642-50085-5

All rights reserved, especially that of translation into foreign languages. It is also forbidden to reproduce this book, either whole or in part, by photomechanical means (photostat, microfilm and/or microcard) or any other means without written permission from the Publishers

(c) by Springer-Verlag Berlin - Heidelberg 1967 Softcover reprint of the hardcover 1st edition 1967

Library of Congress Catalog Card Number 67-23956

Preface

The theory of the stability of motion has gained increasing significance in the last decades as is apparent from the large number of publications on the subject. A considerable part of this work is concerned with practical problems, especially problems from the area of controls and servo-mechanisms, and concrete problems from engineering were the ones which first gave the decisive impetus for the expansion and modern development of stability theory.

In comparison with the many single publications, which are numbered in the thousands, the number of books on stability theory, and especially books not written in Russian, is extraordinarily small. Books which give the student a complete introduction into the topic and which simultaneously familiarize him with the newer results of the theory and their applications to practical questions are completely lacking. I hope that the book which I hereby present will to some extent do justice to this double task. I have endeavored to treat stability theory as a mathematical discipline, to characterize its methods, and to prove its theorems rigorously and completely as mathematical theorems. Still I always strove to make reference to applications, to illustrate the arguments with examples, and to stress the interaction between theory and practice.

The mathematical preparation of the reader should consist of about two to three years of university mathematics. Here and there a few fundamental concepts of the theory of metric spaces are needed, but I have formulated the arguments in such a way that the reader can usually find an interpretation in *n*-dimensional Euclidean space. On the whole I limited the selection of materials mainly to the stability of motions in Euclidean space, particularly since the majority of applications are concerned with such motions. But I have stated the basic definitions of stability and proved a number of criteria in a general form, and pointed out take-off points for further investigations, as for instance in the theory of differential equations and difference equations.

Even when limited to Euclidean space (*i.e.* to common differential and difference equations) a complete presentation of the field is not possible in an introduction. Many fine isolated results had to be left out. But I also had to omit several larger topics. Among them was the stability of random processes (*cf.* the remark in sec. 36) as well as the

Preface

method of "harmonic balance" in the section on periodic motions, which although mathematically suspect is indispensible to the practical man. To include the work done to give a rigorous foundation to such methods (BOGOLYUBOV and MITROPOLSKII in Russia, CESARI, HALE, and coworkers in the USA) would have gone beyond the limits of this book.

It is only natural that the section on periodic motions is rather short compared to the other sections. After all, the subject matter of stability theory involves primarily assertions about the stability of the equilibrium, whereas the numerous contributions to periodic motions are mainly concerned with existence questions.

It was not necessary to treat in more detail individual investigations on second-order differential equations since only quite recently an excellent monograph by REISSIG, SANSONE, and CONTI has appeared, which reports on the newest developments.

As I intended to write a text book and not a handbook, the bibliography is by no means complete. It comprises those publications which I actually used (in the text I frequently referred to sources) and several works of interest for further study.

In preparing the work I received very valuable help from many sources. Dr. KAPPEL read the manuscript and the galley-proofs and sketched the figures. Dr. W. MÜLLER, Prof. REISSIG, Dr. STETTNER, and Dr. INGE TROCH read the galley-proofs and made many critical remarks. I wish to express my sincerest gratitude to all the above. I especially thank Prof. ARNE P. BAARTZ for translating the German manuscript into English and also for making a number of useful suggestions.

A major part of the manuscript was written during my stay at the Mathematics Research Center, Madison, Wis. I am very much obliged to its Directors, Prof. R. E. LANGER and Prof. J. B. ROSSER, for having arranged that stay. Finally, I wish to acknowledge the cooperation of the Springer-Verlag and to appreciate the consideration given to this book by the Editors of the Yellow Series.

Graz, July 1967

WOLFGANG HAHN

Contents

Notations and Formulas	. X
Chapter I. Generalities	. 1
§ 1. The Stability Concept in Mechanics	. 1
§ 2. Stability in the Sense of Liapunov	. 5
Chapter II Linear Eurotional Equations with Constant	
Coefficients	9
§ 3. Transfer Units	. 9
§ 4. Linear Differential Equations with Constant Coefficients .	. 10
§ 5. Geometrical Criteria for Stability	. 16
§ 6. Algebraic Criteria for Stability.	. 19
§ 7. Orlando's Formula	. 29
\S 0. Linear Transfer Systems	. 27
\S 9. All Example	. 33 95
§ 10. The Roundary of Stability	. 50 97
8 19 Linear Differential Difference Equations	. 37
8 12. Stability for Linear Differential Difference Equations with	. 44
Constant Coefficients	46
8 14 Linear Difference Equations with Constant Coefficients	. 40
§ 14. Linear Difference Equations with constant coefficients . § 15. Linear Operators	. 1 0 53
	. 00
Chapter III. The Equilibrium of Autonomous Differential	
Equations	. 56
8.16 Fundamental Concepts Definitions and Notations	56
§ 17. Homogeneous Right Side	. 50 69
§ 18. General Systems of the Second Order	65
§ 10. Scherar Systems of the Second Order	68
§ 20. Second Order Linear Systems	74
§ 20. Decond Order Enlear Systems	76
§ 22. Conservative Second Order Systems	85
<u>,</u>	
Chapter IV. The Direct Method of Liapunov	. 93
§ 23. Geometric Interpretation	93
§ 24. Some Subsidiary Considerations	. 95
§ 25. The Principal Theorems of the Direct Method for	
Autonomous Differential Equations	102
§ 26. Supplements to the Principal Theorems	108
§ 27. Construction of a Liapunov Function for a Linear Equation	115
§ 28. Liapunov Functions for Perturbed Linear Equations	120

Contents

§ 29. The Problem of Aizerman	127
§ 30. Further Applications of the Direct Method	132
§ 31. Absolute Stability	140
§ 32. Popov's Criterion	148
8 33 The Domain of Attraction	156
\$ 21. Tuboy's Theorem	161
	101
Chapter V. The Direct Method for General Motions	166
§ 35. The General Stability Concept	166
§ 36. Extensions and Modifications of the Basic Definitions	170
§ 37. Instability and Non-Uniform Stability	180
§ 38. Relationships between the Stability Types	181
§ 39. Realizing Some Stability Types	186
§ 40. An Example for Instability.	191
§ 41 Liapunov Functions	194
8 42 Tests for Stability	197
§ 12. Applications and Examples I Differential and Difference	101
g 45. Applications and Examples. 1. Differential and Difference	ən 1
Equations	204
§ 14. Applications and Examples. 11. Functional and Partial Dif-	200
terential Equations	208
§ 45. System Stability and Stability of Invariant Sets	219
§ 46. Boundedness Criteria. The Parallel Theorems.	221
Chapter VI. The Converse of the Stability Theorems	225
§ 47. Formulation of the Problem	225
§ 18 The Converse of the Theorems on Non-Asymptotic Stability	226
8.19 The Converse of Theorems on Asymptotic Stability	939
§ 50. Examples for the Converse Theorems	202
§ 50. Examples for the Converse Theorems for Ordinary Differ	200
g 51. Remembers of the converse Theorems for Ordinary Differ-	0/1
S 50 The Commence of the Instability Theorem	241
§ 52. The Converse of the Instability Theorems	200
Chapter VII. Stability Properties of Ordinary Differential	
Equations	257
§ 53 The Meaning of the Decrescence of Liapunov Functions	257
8 54 Existence of a Liapunov Function in Case of Non-Uniform	-01
Asymptotic Stability	259
8 55 Modified Stability Criteria	260
§ 56 Derturbed Equations	200
§ 50. Ferturbed Equations	211 070
§ 57. Equations with Homogeneous Right Side	270
Chapter VIII. Linear Differential Equations	285
§ 58. The General Solution of a Linear Homogeneous Differential	
Equation	285
§ 59. The Nonhomogeneous Linear Equation.	291
§ 60. Linear Equations with Periodic Coefficients.	296
§ 61. The Liapunov Reducibility Theorem	302
8.62 Stability Criteria for Special Linear Differential Equations	301
8.63 The Order Numbers of a Differential Equation	308
s 64 Regular Differential Equations	214
y ut. regulal Differential Equations	014
9 00. Stability in the First Approximation	919

VIII

Contents

Chapter IX. The Liapunov Expansion Theorem	33 0
§ 66. Families of Solutions Depending on a Parameter	330
§ 67. The Liapunov Expansion Theorem \ldots \ldots \ldots	337
Chapter X. The Critical Cases for Differential Equations	342
§ 68. General Remarks Concerning Critical Cases: Subsidiary Results	342
§ 69. The Principal Theorem of Malkin	345
§ 70. Simple Critical Cases for Autonomous Equations	350
Chapter XI. Periodic and Almost Periodic Motions	353
§ 71. General Remarks on periodic Motions	353
Force	359
\$ 73 Forced Almost Periodic Oscillations	364
8 74 Piecewise Linear Equations	369
8 75 A System with Several Discontinuity Types	379
8 76 Perturbed Linear Equations	383
\$ 77. Perturbed Linear Equations for the Resonance Case	391
§ 78. Periodic Solutions of Autonomous Equations.	403
§ 79. Critical Cases of Second Order Autonomous Systems	406
§ 80. The Associated Coordinate System of a Periodic Solution .	413
§ 81. Stability Properties of a Periodic Solution	419
§ 82. Examples: Testing for Stability	422
Bibliography	432
Author Index	443
Subject Index	445

\mathbf{IX}

Notations and Formulas

1. The Definition Symbol. The symbol := or =: defines the variable standing next to the colon. For example, c := f(a, b). c is being introduced, the right side is known.

2. End of Proof. In case of a longer proof, the end of the proof is indicated by the symbol •. It corresponds to the classical q.e.d. Sometimes, it denotes the end of the discussion of an example.

3. Vectors. Vectors in *n*-dimensional Euclidean space R_n are denoted by lower case Latin, and occasionally Greek letters in semi-bold face. Their components have indices. All vectors are column vectors

$$\mathbf{x} = \operatorname{col}\left(x_{1}, \ldots, x_{n}\right).$$

 x^T is the transpose of x and thus is a row vector; $x^T y$ is the inner product of x and y. The norm |x| is the Euclidean norm

$$|\boldsymbol{x}|^2 := x_1^2 + \cdots + x_n^2 = \boldsymbol{x}^T \boldsymbol{x}$$

The zero vector col(0, ..., 0) is simply denoted by 0. The inequality

$$|\mathbf{x}| < a$$

defines an open ball in R_n with radius a and center at the origin; it is denoted by K_a . The "half cylinder" defined by $|\mathbf{x}| < a, t \ge t_0$, is denoted by K_{a,t_0} .

4. Matrices¹) are denoted by capital Latin letters. Their elements are represented by lower case Latin letters with double indices, e.g.

$$A = (a_{ik}), \quad i, k = 1, 2, \dots, n$$

The determinant of A is denoted by det A, its trace by Tr A,

$$\operatorname{Tr} A := \sum_{i=1}^{n} a_{ii}.$$

If $a_{ij} = 0$, $i \neq j$, we write

$$A = \text{diag} (a_{11}, \ldots, a_{nn}).$$

 A^T is the transpose of the matrix A, A^I is the inverse of A in case det $A \neq 0$. E is the unit matrix. Bilinear forms are written in vector notation

$$\sum_{i,k=1}^{n} a_{ik} x_i y_k =: \mathbf{x}^T A \mathbf{y}.$$

¹) Cf., for instance, Bellman [2], Schmeidler [1].

If the quadratic form $\mathbf{x}^T \mathbf{B} \mathbf{x}$, B symmetric, is positive definite we write B > 0.

The norm of A is the square root of the largest characteristic root of $A^{T}A$, or equivalently,

$$||A|| := \sup \left\{ \frac{|A \mathbf{x}|}{|\mathbf{x}|} | \mathbf{x} \in R_n \right\}.$$

5. Differentiation. For a scalar function f depending on a variable vector \mathbf{x} (a mapping of a domain in R_n into the real line) we write

$$f_{\mathbf{r}} = \frac{\partial f}{\partial \mathbf{x}} := \operatorname{grad} f = \operatorname{col}\left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right).$$

The derivative of a vector g(x) with respect to x is the Jacobian or functional matrix

$$\frac{\partial \mathbf{g}}{\partial \mathbf{x}} := \left(\frac{\partial g_i}{\partial x_k}\right), \quad i = 1, 2, \dots, m; \ k = 1, 2, \dots, n.$$

The derivative with respect to the "time" variable t is denoted by a raised dot, $\dot{x} := \frac{dx}{dt}$.

The differential equation

$$\dot{x} = f(x, t)$$

replaces the n scalar differential equations

$$\dot{x}_i = f_i(x_1, \dots, x_n, t), \quad i = 1, 2, \dots, n.$$

In general we shall assume without further mention that the equation possesses solutions in a certain neighborhood K_h of the origin which are uniquely determined by the *initial time* t_0 and the *initial point* \mathbf{x}_0 . The solution determined by t_0 and \mathbf{x}_0 is denoted by $\mathbf{p}(t, \mathbf{x}_0, t_0)$, so that $\mathbf{p}(t_0, \mathbf{x}_0, t_0) = \mathbf{x}_0$.

Uniqueness is assured if f(x, t) satisfies a Lipschitz condition ($f \in C_0$), *i.e.* if there exists a number L such that

$$|f(\mathbf{x}, t) - f(\mathbf{x}, t)| < L |\mathbf{x} - \mathbf{x}|$$

for all $\mathbf{x}, \mathbf{x} \in K_{b}, t_{0} \leq t \leq t_{1}$. In that case there is an estimate

$$|x_0 - x_0| e^{-nL|t-t_0|} \le |p(t, x_0, t_0) - p(t, x_0, t_0)| \le |x_0 - x_0| e^{+nL|t-t_0|}.$$

If $f(\mathbf{x}, t)$ satisfies this condition with the same L for all \mathbf{x}, \mathbf{x} in the closed ball $|\mathbf{x}| \leq h$ and for all $t \geq t_0$, we say that f satisfies a Lipschitz condition with a uniform Lipschitz constant $(f \in \tilde{C}_0)$ (cf. also CODDINGTON and LEVINSON [1], KAMKE [1], among others).

6. Point Sets. If G is a point set in R_n , G denotes the closure, b(G) its boundary. If $G_2 \leftarrow G_1$, G_1 , G_2 denotes the difference.