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Preface 

The dynamics of mechanical rigid-body mechanisms is a highly developed 
discipline. The model equations that apply to the tremendous variety of ap­
plications of rigid-body systems in industrial practice are based on just a 
few basic laws of, for example, Newton, Euler, or Lagrange. These basic laws 
can be written in an extremely compact, symmetrical, and esthetic form, 
simple enough to be easily learned and kept in mind by students and engi­
neers, not only from the area of mechanics but also from other disciplines 
such as physics, or mathematics, or even control, hydraulics, or electronics. 
This latter aspect is of immense practical importance since mechanisms, ma­
chines, robots, and vehicles in modern industrial practice (sometimes called 
mechatronic systems) usually include various subsystems from the areas of 
hydraulics, electronics, pneumatics, informatics, and control, and are built 
by engineers trained in quite different disciplines. 

Conventional methods of modeling rigid-body mechanisms 

In contrast to the comparatively simple and easy-to-learn basic laws of rigid­
body systems, the practical application of these laws to the planar or spatial 
motions of industrial mechanisms rapidly leads to extremely lengthy and 
complex equations of motion, where the form and complexity of the model 
equations depends critically on the choice of the model coordinates. Until 
recently this had the following consequences: 

1. A large variety of specialized techniques have been developed, each suit­
able for efficiently modeling a special-purpose mechanism. 

2. These techniques have usually been applied to comparatively simple 
mechanisms, as most of them were developed at universities or academic 
institutes, where there was no need to model complex realistic industrial 
systems, and no pressure to do this within a predetermined time schedule. 

3. The overwhelming majority of practicing industrial engineers have not 
had the opportunity to learn all these special modeling techniques. They 
were usually neither capable of finding a special modeling approach suit­
able to a given mechanism, nor of deriving efficiently and correctly the 
realistic model equations, nor of estimating in advance the effort required 
to derive those models and to set up a time schedule for the task. 
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As a consequence there has been a large gap between the available basic 
laws of mechanics and the ability of practicing industrial engineers to apply 
them to large rigid-body systems. 

General-purpose rigid-body analysis programs as efficient modeling 
tools 

In the past two decades the above problems have been overcome by worldwide 
intensive research activity. As a result, various general-purpose rigid-body 
analysis programs have been developed that: 

1. A utomatically set up the equations of motion of rather complex kinematic 
and dynamic mechanisms. 

2. Provide efficient and accurate computer simulations of most of these sys­
tems. 

3. Perform the first analysis steps, such as static analysis, kinematic anal­
ysis, locallinearization, eigenvalue analysis, and sensitivity analysis. 

Examples of general-purpose rigid-body analysis programs include ADAMS 
([1],[2]), DADS ([3]), NUSTAR ([4], [5]), and various other software packages 
discussed in ([6], [7]). Teaching computers to automatically formulating the 
equations of motion was equivalent to developing systematic generat methods 
for setting up and solving model equations of quite generat mechanisms. U sing 
these computer programs, practicing industrial engineers can simulate and 
analyse complex rigid-body systems: 

1. By setting up an engineering model of the mechanism based on their 
intuitive practical understanding ofthat system. 

2. By handling a rigid-body analysis program without the burden of deriv­
ing complex analytical model equations, developing computer simulation 
code, and developing numerical solution algorithms of these equations. 

Many of these rigid-body analysis programs have been equipped with 
graphical user interfaces that can be easily handled even by engineers who 
have a limited understanding both of the underlying mechanics and numer­
ics, and of the problems that may occur in the computer-aided modeling and 
solution process. However this latter inexperience may have serious conse­
quences: numerical results may be obtained by these programs that are far 
more erroneous than any results obtained in laboratory experiments. 

Objectives of this monograph 

Volume I of this monograph presents: 

1. An introduction into the theoretical background ofrigid-body mechanics. 
2. A systematic approach for deriving model equations of mechanisms, as a 

first step in symbolic differential-algebraic equations (DAE) form. 
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Volume II presents: 

1. Various exercises to systematically apply this approach to examples of 
planar and spatial mechanisms. 

2. A symbolic approach for mapping the DAEs in a second step into sym­
bolic differential equations (DEs}, into nonlinear and linear state-space 
equations, and sometimes also into transfer function form. 

The objectives of both the theoretical discussions (Volume I) and the practical 
applications (Volume II) are: 

1. To prepare the reader for efficiently handling and application of general­
purpose rigid-body analysis programs to complex mechanisms, and 

2. To set up symbolic mathematical models of mechanisms in DAE form for 
computer simulations and/or in DE form, as is often required in dynamic 
analysis and control design. 

From the point of view of these two objectives this monograph can be consid­
ered as an introduction to basic mechanical aspects of mechatronic systems. 

Organization of the books (Volumes I and II) 

The two volumes of this monograph provide a systematic theoretical approach 
for setting up model equations of planar and spatial rigid-body systems in DAE 
form (Volume I), and present various applications of the modeling methodol­
ogy to examples of planar and spatial mechanisms (Volume 11). 

Volume I includes six chapters and Jour appendices. Chapter 1 gives a 
brief introduction to the subject of modeling rigid-body mechanisms, which 
is illustrated by several simple examples and by some more complex appli­
cations of mechanisms from industrial practice. Chapter 2 presents a brief 
review of vector and matrix algebra and of multivariable calculus for the pla­
nar and spatial cases. Spatial rotations are derived in terms of Bryant angles 
together with the associated kinematic DEs. Due to the introductory charac­
ter of this book, quaternions or Euler parameters of spatial rotations are not 
considered here ( despite the fact that singularities may occur in the kinematic 
DEs of Bryant angles). Time derivatives of vector functions together with the 
gradient vector and the Jacobian matrix of those functions are introduced. 
They will be used extensively for describing constraint relations. Some use­
ful relations of scalar products and cross products of vectors are derived in 
Appendix A.1, together with different expressions for the time derivatives of 
vectors and orientation matrices of planar and spatial vectors, and with a 
brief review of derivatives of vector functions. Relations of planar and spatial 
kinematic and active constraints, represented in Cartesian coordinates, are 
discussed in Chapter 3 together with the associated velocity and accelera­
tion constraint equations, including formal relationships between constraint 
reaction forces and torques, and with a discussion of possible singularities 
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of the constraint equations, illustrated by an example. Kinetic equations of 
planar and spatial rigid-body mechanisms are developed in Chapter 4 and 
in Appendix A.2. Starting with the concepts of linear momentum and angu­
lar momentum in Beetion 4.1, the Newton-Euler equations of the planar and 
spatial motion of a single unconstrained rigid body are derived in Beetion 4.2, 
together with the model equations of planar and spatial mechanisms in Bee­
tion 4.3. Abrief discussion of the numerical solution of DAEs is presented in 
Beetion 4.4. Parallel to the Newton-Euler approach, the Lagrange formalism 
is briefly discussed in Appendix A.2. Basic differences between the theoretical 
constituents of planar and spatial mechanisms are collected in Appendix A.3. 
In Chapter 5 a systematic approach for deriving the constraint equations of 
planar and spatial joints is presented based on suitable representations and 
projections of vector and orientation loop equations. The constraint equa­
tions of various joint types in common use are derived there. Theoretical 
models of joints of planar mechanisms are presented in Beetion 5.1. Model 
equations of joints of spatial mechanisms are derived in Beetion 5.2 and in 
Appendix A.4. Constitutive relations of applied forces and torques of planar 
and spatial mechanisms are discussed in Chapter 6. Among those, theoretical 
models of translational and torsional springs and dampers as well as models 
of actuators and motors are briefly presented. 

Various simple and some more complex applications of rigid-body mech­
anisms are modeled in symbolic DAE form and in DE form, and for se­
lected mechanisms also in nonlinear and linear state-spaee form and using 
the transfer funetion matrix representation in Volume II. They include var­
ious combinations of theoretical models of joints, and of active and passive 
force elements. In Chapter 1 of Volume II, the modeling methodology is sum­
marized, and a software package is briefly discussed ([8]) that maps symbolic 
model equations from DAE form into DE form (in most cases where this is 
feasible). Two applications of planar models of an unconstrained rigid body 
are discussed in Chapter 2. Several applications of a planar rigid body un­
der constrained motion are presented in Chapter 3. Various applications of 
planar mechanisms that include two rigid bodies under constraints are dis­
cussed in Chapter 4. Applications of a rigid body under unconstrained spatial 
motion are collected in Chapter 5, followed by several applications of a con­
strained spatial rigid body in Chapter 6, and by several applications of spatial 
mechanisms including between two and thirteen constrained rigid bodies in 
Chapter 7. 

U se of the text 

The text of the books is intended for use and self-study by practicing indus­
trial engineers that have a bachelor's degree, and by students of undergradu­
ate university courses. The contents of the books have been used in lectures 
and courses held over many years: 
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1. In several industrial companies (like BMW and IABG) for practicing 
engineers from the areas of mechanics, vibration techniques, vehicle sim­
ulation, control, hydraulics, pneumatics, measurement, testing, electro­
magnetics, and electronics. 

2. In the undergraduate courses of several universities (Universities of Mu­
nich, Tübingen, and Kassel) for students from the areas of mechanical 
engineering, control engineering, electrical engineering, civil engineering, 
physics, and mathematics. 

The practicing engineers who attended these courses have influenced both 
the contents and the direction of this monograph, resulting in more emphasis 
being placed on: 

1. A systematic choice of notation (with indices of the variables that 
uniquely identify the frames of their representations and time deriva­
tives). 

2. An algebraic formulation of all expressions in a form suitable for direct 
implementation in a computer. 

3. Applying these methods to both simple and complex mechanisms. 

The engineers and students that attended these lectures had the opportunity 
to apply these methods to practical examples of mechanisms using general­
purpose rigid-body analysis programs like NUSTAR, ADAMS, and DADS. 

Spatial mechanics is conceptually more complex and its theoretical mod­
eling provides much lengthier and more unwieldy formal expressions than 
planar mechanics. To enable the beginner reader to successfully master his 
or her study of rigid-body dynamics and to keep the amount of notation and 
formal expressions of the applications presented within acceptable limits, only 
planar rigid-body systems are considered in the first parts of Chapters 2, 3, 
5 and 6 of Volume I. They present vectors, matrices, kinematics, forces and 
torques of planar geometry and planar mechanics. The equations of motion 
of rigid bodies under planar motion are collected in Chapter 4 of Volume I. 
Various planar mechanisms are discussed in Chapters 2, 3 and 4 of Volume II. 
Teaching experience shows that the methodology of modeling rigid-body sys­
tems can be basically understood by considering planar systems only. Having 
developed confidence and enough intuition in the basic methods of theoreti­
cal modeling of planar mechanisms, the reader is encouraged to study spatial 
mechanisms in the second parts of Chapters 2, 3, 5, 6 and in alt of Chapter 
4 of Volume I, and the applications of spatial mechanisms of Chapters 5, 6, 
and 7 of Volume II. Basic differences between the model equations of planar 
and spatial mechanisms are summarized in Appendix A.3 of Volume I. 
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