Gu Chaohao (Ed.) Soliton Theory and Its Applications

Springer-Verlag Berlin Heidelberg GmbH

Gu Chaohao (Ed.)

Soliton Theory and Its Applications

With 62 Illustrations

Gu Chaohao (Ed.) Institute of Mathematics Fudan University Shanghai 200433 The People's Republic of China

Library of Congress Cataloging-in-Publication Data Ku li tzu li lun yü ying yung. English. Soliton theory and its applications / Gu Chaohao (ad.), p. cm. Includes bibliogerphical reference and index. ISBN 978-3-642-08177-4 ISBN 978-3-662-03102-5 (eBook) DOI 10.1007/978-3-662-03102-5 1. Solitons. 2. Mathematical physics. I. Ku, Ch'ao-hao. OC174.26.W28K88 1995 531'.1133--dc20 95-34798 CIP

The original Chinese edition was published in 1990 by Zhejiang Science and Technology Publishing House, Hangzhou, as a monograph in the Series of Applied Mathematics.

Mathematics Subject Classification (1991): 35Q51, 35Q53, 35Q55, 35Q58, 58F07

ISBN 978-3-642-08177-4

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1995 Originally published by Springer-Verlag Berlin Heidelberg New York in 1995 Softcover reprint of the hardcover 1st edition 1995

Typesetting: Zhejiang Science and Technology Publishing House, Hangzhou,The People's Republic of ChinaSPIN: 1007847941/3143-543210 - Printed on acid-free paper.

Contents

Chapter 1 Soliton Theory and Modern Physics Guo Boling	1
1.1 Introduction	1
Action	. 5
1.3 Solitons in Plasma	18
1.4 Collapse of Langmuir Waves	38
1.5 Interaction of Solitons and Asymptotic Properties as $t \to \infty$	43
1.6 Solitons in Molecular Systems	53
1.7 Toda Lattice and Born-Infeld Equation	64
Li Yishen '	69 69 82
2.3 The Solution of the Initial value Problem of the Kdv Equation 2.4 AKNS Equation	87 94
2.5 The Direct and Inverse Scattering Problem of the	• •
AKNS Eigenvalue Problem 2.6 Solving the Initial Value Problems of AKNS Hierarchy	98
by Inverse Scattering Method 1	.06
2.7 KP Equation and Associated Inverse Scattering Method 1	.09
Chapter 3 Bäcklund Transformations and Darboux Transformations Gu Chaohao	.20
3.1 Introduction	.22
3.2 Classical Darboux Matrix 1	.26

 3.3 Some Special Cases 3.4 Darboux Transformations for More General Cases 3.5 Darboux Transformation in 1 + 2 Dimensions 3.6 Some Remarks	134 139 145 149
Chapter 4 Classical Integrable Systems Cao Cewen	152
 4.1 Symplectic Manifold 4.2 Complete Integrability in the Liouville Sense 4.3 Several Finite-dimensional Integrable Systems 	153 163 170
Chapter 5 Symmetry Tian Chou	192
 5.1 Symmetries 5.2 Strong Symmetry, Heredity 5.3 Commutator, Lie Algebra 5.4 Transformation 	192 201 210 221
Chapter 6	
Kac-Moody Algebras and Integrable Systems Tu Guizhang	230
 Kac-Moody Algebras and Integrable Systems Tu Guizhang 6.1 Integrable Systems in Lax's Sense 6.2 A Brief Introduction to Kac-Moody Algebras 6.3 Generalized Hierarchy of KdV Equations 6.4 τ Functions and the KP Hierarchy 6.5 Symmetry, Loop Algebras and Virasoro Algebras 	230 230 232 255 266 291
Kac-Moody Algebras and Integrable Systems Tu Guizhang6.1 Integrable Systems in Lax's Sense6.2 A Brief Introduction to Kac-Moody Algebras6.3 Generalized Hierarchy of KdV Equations6.4 τ Functions and the KP Hierarchy6.5 Symmetry, Loop Algebras and Virasoro AlgebrasChapter 7Soliton and Differential GeometryHu Hesheng	230 232 255 266 291 297
 Kac-Moody Algebras and Integrable Systems <i>Tu Guizhang</i> 6.1 Integrable Systems in Lax's Sense 6.2 A Brief Introduction to Kac-Moody Algebras 6.3 Generalized Hierarchy of KdV Equations 6.4 <i>τ</i> Functions and the KP Hierarchy 6.5 Symmetry, Loop Algebras and Virasoro Algebras Chapter 7 Soliton and Differential Geometry <i>Hu Hesheng</i> 7.1 Fundamental Facts on the Theory of Surfaces 7.2 Surfaces of Negative Constant Curvature and the Sine-Gordon Equation 	 230 232 255 266 291 297 298 302
 Kac-Moody Algebras and Integrable Systems <i>Tu Guizhang</i> 6.1 Integrable Systems in Lax's Sense 6.2 A Brief Introduction to Kac-Moody Algebras 6.3 Generalized Hierarchy of KdV Equations 6.4 <i>τ</i> Functions and the KP Hierarchy 6.5 Symmetry, Loop Algebras and Virasoro Algebras Chapter 7 Soliton and Differential Geometry <i>Hu Hesheng</i> 7.1 Fundamental Facts on the Theory of Surfaces 7.2 Surfaces of Negative Constant Curvature and the Sine-Gordon Equation 7.3 Line Congruences, Pseudo-spherical Line Congruences, and Bäcklund Transformations 7.4 Soliton Equations and Harmonic Maps 7.5 Nonlinear Partial Differential Equation Admitting 	 230 232 255 266 291 297 298 302 307 314

Chapter 8 Numerical Study of Nonlinear Waves				
Guo Benyu	337			
8.1 Finite Difference Method for the Korteweg-de Vries Equation8.2 Numerical Study of Initial-boundary Value Problems of the	338			
Korteweg-de Vries Equation	342			
8.3 Finite Element Method for the Korteweg-de Vries Equation8.4 Spectral and Pseudospectral Method for the Korteweg-de Vries	345			
Equation	348			
8.5 Numerical Methods for the Benjamin-Bona-Mahony Equation8.6 Numerical Study of the Klein-Gordon Equation and the	351			
Sine-Gordon Equation	354			
8.7 Numerical Study of the Schrödinger Equation and the				
Dirac Equation	361			
Chapter 9 Solitons in the Theory of Gravitational Waves				
Ge Molin	363			
9.1 Introduction	363			
9.2 General Solutions of BZG				
9.3 One-Soliton Solution	372			
9.4 New Type of Soliton Solutions	376			
9.5 Hamiltonian Structure of BZ Gravity	385			
References	. 392 401			

List of Contributing Authors

Guo Boling	Institute of Applied Physics and Computational
	Mathematics, P.O.Box 8009
	Beijing 100088, China
Li Yishen	Department of Mathematics
	University of Science and Technology of China
	Hefei 230026, China
Gu Chaohao	Institute of Mathematics, Fudan University
	Shanghai 200433, China
Cao Cewen	Department of Mathematics, Zhengzhou University
	Zhengzhou 450052, China
Tian Chou	Department of Mathematics
	University of Science and Technology of China
	Hefei 230026, China
Tu Guizhang	Computing Center, Chinese Academy of Science
U U	Beijing 100080, China
Hu Hesheng	Institute of Mathematics, Fudan University
-	Shanghai 200433, China
Guo Benyu	Department of Mathematics
	University of Science and Technology of Shanghai
	Shanghai 201800, China
Ge Molin	Nankai Institute of Mathematics
	Tianjin 300071, China

Introduction

Soliton theory is an important subject in applied mathematics and mathematical physics, which has developed rapidly since the sixties.

A soliton or solitary wave occurs in the solution of various nonlinear partial differential equations; it has some striking properties and describes several important physical phenomena. In physical language, these properties are: (i) energy centered within a small region; (ii) an elastic scattering phenomenon in the interaction of two solitons (that is, the shape and velocity of the wave can recover after interaction). Solitons behave both as particles and as waves, and occur frequently in nature. In research field such as fluid mechanics, plasma physics, nonlinear optics, classical and quantum field theory etc., there are many important problems related to soliton theory. In recent years, the notion of a "soliton" has also become understood in a more general sense. For instance, static solutions with property (i) are sometimes called solitons.

The origin and development of soliton theory represent a great event in the study of nonlinear partial differential equations. As is well known, the Fourier method is very useful in many linear problems of mathematical physics. With the Fourier transformation, one can obtain exact solutions to the problem. For nonlinear partial differential equations, the situation is much more difficult. However, soliton theory provided many methods to treat nonlinear problems. The inverse scattering method in particular can be considered in some sense as the Fourier method for nonlinear problems. Besides the inverse scattering approach, there are plenty of elegant and efficient methods of constructing exact solutions. Many branches of mathematics, such as classical and functional analysis, Lie groups, Lie algebras, differential geometry, algebraic geometry, topology, dynamical systems and computational mathematics, provide important tools for the study of solitons. On the other hand, the study of solitons also promotes the development of these areas.

For these reasons, both mathematicians and physicists pay much attention to soliton theory. It is a very active research field, and covers an increasing range of subjects. In each of the last ten years, several international conferences on this field were held. Several books have been published, and there are many papers on soliton theory in various journals. There are research groups in this field in many countries, each with its own style and focus. In such a situation, it is of significance to have a book of relatively wide scope to introduce the basic subjects in soliton theory, and to help students and practitioners who wish to reach the frontier of research. The present book is written with this purpose in mind.

This book is written by nine contributors, and an effort has been made to ensure as far as possible that the chapters are independent. From the contents, the reader can trace the main subjects from the original physical problems to the basic mathematical approaches, including analytic methods and numerical methods. It should be mentioned that each author has made a systematic study in the corresponding field, and so each contribution reflects this experience. Each author attempts to demonstrate first the basic concepts and main problems, then introduces more recent research and his or her own results. We hope that this book will succeed in accomplishing the abovementioned goals.

Soliton theory has become extremely rich, and this book cannot cover all aspects. For example the Riemann-Hilbert method and the algebraicgeometric method are not discussed. Nor are the various concrete applications to technical problems.

This book has been written for specialists, teachers and students in mathematics and physics.

Gu Chaohao