# Lecture Notes in Mathematics

A collection of informal reports and seminars Edited by A. Dold, Heidelberg and B. Eckmann, Zürich

143

# Karl W. Gruenberg

Queen Mary College, London

# Cohomological Topics in Group Theory



Springer-Verlag Berlin · Heidelberg · New York 1970

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin · Heidelberg 1970. Library of Congress Catalog Card Number 70-127042 Printed in Germany. Title No. 3299

## PREFACE

These notes are based on lectures that I have given at various times during the last four years and at various places, but mainly at Queen Mary College, London. Chapters 1 to 7 have been in circulation as a volume in the Queen Mary College Mathematics Notes since the autumn of 1967. They are reproduced here unchanged except for the addition of some bibliographical material and the correction of some minor errors.

Chapter 8 is an attempt at a reasonably complete survey of the subject of finite cohomological dimension. I have included proofs of everything that is not readily accessible in the literature.

Chapters 9 and 11 contain an account of a kind of globalised extension theory which I believe to be new. A survey of some of the results has appeared in volume 2 of "Category theory, homology theory and their applications", Springer Lecture Notes, no.92 (1969). The basic machinery of extension categories for arbitrary groups is given in chapter 9. Then in chapter 11 we focus attention exclusively on finite groups and primarily on the structure of minimal projective extensions. Chapter 10 is purely auxiliary and merely sets out some cohomological facts needed in chapter 11.

My aim in these lectures was to present cohomology as a tool for the study of groups. In this respect they differ basically from other available accounts of group cohomology in all of which the theory is developed with an eye on arithmetical applications. Our subject here is group theory with a cohomological flavour.

It should be stressed that there is no pretence whatsoever at completeness. In fact, the general homological machinery is kept to the bare minimum needed for the topics at hand. It follows - inevitably - that many important features are barely mentioned; and some not at all.

The audiences were not assumed to know anything about homological algebra except the most rudimentary facts. A little more knowledge of group theory was presupposed, but nothing at all sophisticated. Full references to all non-trivial or non-standard results are always given.

There is a list of the most frequently quoted books immediately following this preface. Each chapter ends with a list of all articles and books mentioned in that chapter and reference numbers refer to that list at the end of the chapter where they occur.

I was fortunate to have perceptive audiences who frequently saved me from errors and obscurities. My thanks go to all who participated and in particular to D. Cohen, I. Kaplansky, D. Knudson, A. Learner, H. Mochizuki, G. Rinehart, W. Vasconcelos and B. Wehrfritz. I owe a special debt of gratitude to Urs Stammbach for his careful and critical reading of large sections of these notes.

iv

I am also grateful to Cornell University, the University of Oregon, the University of British Columbia and the Eidgen. Tech. Hochschule, Zürich, for financial assistance at various stages of this work.

The notes were typed by Mrs. Esther Monroe and Miss Valerie Kinsella and I thank them both for their enormous patience with me and their excellent work.

Queen Mary College, London, February 1970.

# CONTENTS

|     | Preface                                            | iii  |
|-----|----------------------------------------------------|------|
|     | Book list                                          | xi   |
|     | Leitfaden                                          | xii  |
|     | Some notation and terminology                      | xiii |
|     |                                                    |      |
|     | CHAPTER 1: Fixed point free action                 | 1    |
| 1.1 | The fixed point functor and its dual               | ı    |
| 1.2 | Elementary consequences of fixed point free action | 3    |
| 1.3 | Finite groups                                      | 5    |
|     | Sources and references                             | 12   |
|     |                                                    |      |
|     | CHAPTER 2: The cohomology and homology groups      | 15   |
| 2.1 | The cohomology functor                             | 15   |
| 2.2 | The homology functor                               | 21   |
| 2.3 | Change of coefficient ring                         | 25   |
| 2.4 | Isomorphism of group rings                         | 26   |
|     | Sources and references                             | 29   |
|     |                                                    |      |
|     | CHAPTER 3: Presentations and resolutions           | 31   |
| 3.1 | A functor from presentations to resolutions        | 31   |
| 3.2 | Remarks on the construction of §3.1                | 35   |
| 3.3 | Cyclic groups                                      | 39   |
| 3.4 | The standard resolution                            | 41   |

| 3.5 | $H^{1}(G, )$ and $H_{1}(G, )$                 | 44         |
|-----|-----------------------------------------------|------------|
| 3.6 | $H^2(G, )$ and $H_2(G, )$                     | 46         |
| 3.7 | -                                             | 48         |
|     | References                                    | 50         |
|     |                                               |            |
|     | CHAPTER 4: Free groups                        | 51         |
|     |                                               | <b>63</b>  |
| 4.1 | Dimension subgroups                           | 51         |
| 4.2 | Residual nilpotence of the augmentation ideal | 54         |
| 4.3 | Residual properties of free groups            | 5 <b>7</b> |
| 4.4 | Power series                                  | 59         |
| 4.5 | Units and zero divisors                       | 61         |
|     | Sources and references                        | 63         |
|     |                                               |            |
|     | CHAPTER 5: Classical extension theory         | 65         |
|     |                                               |            |
| 5.1 | The problem                                   | 65         |
| 5.2 | Covering groups                               | 67         |
| 5.3 | Extensions with abelian kernel                | 70         |
| 5.4 | General extensions                            | 73         |
| 5.5 | Obstructions                                  | 76         |
|     | Sources and references                        | 84         |
|     |                                               |            |
|     | CHAPTER 6: More cohomological machinery       | 85         |
|     |                                               | ~~         |
| 6.1 |                                               | 85         |
| 6.2 | Restriction, inflation, corestriction         | 88         |

## viii

| 6.3  | The Shapiro lemma                        | 91  |
|------|------------------------------------------|-----|
| 6.4  | The inflation-restriction sequence       | 93  |
| 6.5  | The trace map for finite groups          | 94  |
|      |                                          |     |
|      | CHAPTER 7: Finite p-groups               | 97  |
| 7.1  | Frattini groups                          | 97  |
| 7.2  | Generators and relations for p-groups    | 99  |
| 7.3  | The Golod-Safarevič inequality           | 104 |
| 7.4  | Hilbert class fields                     | 107 |
| 7.5  | Outer automorphisms of order p           | 110 |
|      | Sources and references                   | 116 |
|      |                                          |     |
|      | CHAPTER 8: Cohomological dimension       | 119 |
| 8.1  | Definition and elementary facts          | 119 |
| 8.2  | Test elements                            | 122 |
| 8.3  | Some groups of cohomological dimension 2 | 125 |
| 8.4  | One relator groups                       | 129 |
| 8.5  | Direct limits                            | 132 |
| 8.6  | Free products                            | 138 |
| 8.7  | Extensions                               | 145 |
| 8.8  | Nilpotent groups                         | 148 |
| 8.9  | Centres                                  | 155 |
| 8.10 | Euler characteristics                    | 159 |
| 8.11 | Trivial cohomological dimension          | 168 |
| 8.12 | Finite groups                            | 175 |
|      | Sources and references                   | 179 |

|      | CHAPTER 9: Extension categories: general theory                                             | 185 |
|------|---------------------------------------------------------------------------------------------|-----|
| 9.1  | The categories $\left( rac{\mathtt{G}}{\mathtt{G}}  ight)$ and $\mathfrak{Q}_{\mathtt{G}}$ | 185 |
| 9.2  | Two theorems of Schur                                                                       | 189 |
| 9.3  | Monomorphisms and epimorphisms                                                              | 191 |
| 9.4  | Injective objects                                                                           | 194 |
| 9.5  | Projective objects                                                                          | 196 |
| 9.6  | Minimal projectives                                                                         | 201 |
| 9•7  | Change of coefficient ring                                                                  | 204 |
| 9.8  | Projective covers                                                                           | 206 |
| 9.9  | Central extensions                                                                          | 210 |
|      | Sources and references                                                                      | 218 |
|      |                                                                                             |     |
|      | CHAPTER 10: More module theory                                                              | 221 |
| 10.1 | Module extensions                                                                           | 221 |
| 10.2 | Heller modules                                                                              | 227 |
| 10.3 | Ext under flat coefficient extensions                                                       | 230 |
| 10.4 | Localisation                                                                                | 234 |
| 10.5 | Local rings                                                                                 | 238 |
| 10.6 | Semi-local rings                                                                            | 240 |
| 10.7 | Cohomological criteria for projectivity                                                     | 242 |
|      | Sourcés and references                                                                      | 247 |
|      | CHAPTER 11: Extension categories: finite groups                                             | 249 |

|      |         |             |      | 1 - 1 |    |            |    | ** | 050 |
|------|---------|-------------|------|-------|----|------------|----|----|-----|
| 11.1 | Minimal | projectives | when | [G]   | 15 | invert1ble | in | ĸ  | 250 |

| 11.2 | Existence of projective covers                | 251 |
|------|-----------------------------------------------|-----|
| 11.3 | Cohomological properties of projectives       | 255 |
| 11.4 | Cohomological characterisation of projectives | 258 |
| 11.5 | Uniqueness of minimal projectives             | 262 |
| 11.6 | Minimal free extensions                       | 267 |
| 11.7 | The module structure of minimal projectives   | 270 |
| 11.8 | Conclusion                                    | 273 |
|      | Sources and references                        | 274 |

x

#### BOOK LIST

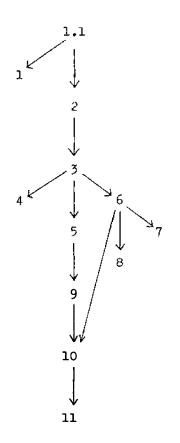
The following books are usually referred to by their author's name only.

- Burnside, W.: The theory of groups of finite order, Cambridge, 2nd edition, 1911 (Chelsea 1958).
- Cartan, H. and Eilenberg, S.: Homological algebra, Princeton 1956.
- Curtis, C.W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.
- Hall, P.: Nilpotent groups, Notes of lectures at the Canadian Mathematical Congress, Univ. of Alberta, 1957. (Reprinted: Queen Mary College Mathematics Notes, 1969).

Huppert, B.: Endliche Gruppen I, Springer, 1967.

- Lang, S.: Rapport sur la cohomologie des groupes, Benjamin, 1966.
- Rotman, J.: The theory of groups: an introduction, Allyn and Beacon, 1965.
- Schenkman, E.: Group theory, van Nostrand, 1965.
- Scott, W.R.: Group theory, Prentice-Hall, 1964.
- Serre, J.-P.: Corps Locaux, Hermann, 1962.

UNGEFÄHRER LEITFADEN.



## SOME NOTATION AND TERMINOLOGY

Let G be a group.

If S is a subset of a G-group M (p.1), <G<S> is the G-subgroup generated by S. We write <1<S> = <S> = subgroup generated by S.  $Fr_{G}(M) = \underline{G-Frattini \text{ group}} \text{ of } M ($  $d_{C}(M) = minimum number of G-generators of M (§7.1).$  $N_{G}(A) = normalizer$  of A in G.  $C_{C}(A) = centralizer$  of A in G. |G|, |x| = order of G, x. A complete set of representatives of the (right) cosets of A in G is called a (right) transversal of A in G. G[M = M]G = split extension with kernel M and complement G (§1.1). II = product (Cartesian product). $\parallel$  = coproduct. This is the direct sum in Mod<sub>G</sub>, the category of G-modules. It is \*, the free product, in the category of groups.

 $[a,b] = a^{-1}b^{-1}ab = \underline{commutator}$  of a by b. If A, B are subsets of G,  $[A,B] = \langle [a,b] | a \in A, b \in B \rangle$ . If H, K are subgroups of G and K  $\triangleleft$  H (normal), H/K is a <u>factor</u> of G. If [H,G]  $\leq$  K, the factor is called <u>central</u>.

A <u>finite series</u> is a family of subgroups  $(S_i; 0 \le i \le m)$ , where  $S_i \triangleleft S_{i+1}$ . If all factors are central, the series is called a <u>central series</u>. If G has a finite central series from 1 to G (i.e.,  $S_0 = 1$  and  $S_m = G$ ), then G is called <u>nilpotent</u>. If G has a finite series from 1 to G with all factors abelian (cyclic), then G is called <u>soluble</u> (<u>polycyclic</u>). h(G) = Hirsch number of the locally polycyclic G (§8.8).

If  $\zeta_0(G) = 1$ ,  $\zeta_1(G) = \text{centre of } G$ , and  $\zeta_{k+1}(G)$  is the unique subgroup so that  $\zeta_{k+1}(G)/\zeta_k(G) = \zeta_1(G/\zeta_k(G))$ , then  $(\zeta_1(G); i \ge 0)$ is called the <u>upper central series</u> of G. If G is nilpotent and  $\zeta_{c-1}(G) < \zeta_c(G) = G$ , then c is the <u>class</u> of G.

If  $G_1 = G$ ,  $G_{k+1} = [G_k,G]$ , then  $(G_i; i \ge 1)$  is called the <u>lower</u> <u>central series</u> of G.

If  $G^{(0)} = G$ ,  $G' = [G,G] (= G_2)$  and  $G^{(m+1)} = (G^{(m)})$ , then  $(G^{(1)}; i \ge 0)$  is called the <u>derived series</u> of G.