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PREPACE 

These notes are based on lectures that I have given at 

various times during the last four years and at various places, 

but mainly at Queen Mary College, London. Chapters I to 7 have 

been in circulation as a volume in the Queen Mary College 

Mathematics Notes since the autumn of 1967. They are reproduced 

here unchanged except for the addition of some bibliographical 

material and the correction of some minor errors. 

Chapter 8 is an attempt at a reasonably complete survey 

of the subject of finite cohomological dimension. I have 

included proofs of everything that is not readily accessible 

in the literature. 

Chapters 9 and ll contain an account of a kind of 

globalised extension theory which I believe to be new. A survey 

of some of the results has appeared in volume 2 of "Category 

theory, homology theory and their applications", Springer 

Lecture Notes, n0.92 (1969). The basic machinery of extension 

categories for arbitrary groups is given in chapter 9. Then 

in chapter iI we focus attention exclusively on finite groups 

and primarily on the structure of minimal projective extensions. 

Chapter lO is purely auxiliary and merely sets out some 

cohomological facts needed in chapter ll. 

My aim in these lectures was to present cohomology as a 

tool for the study of groups. In this respect they differ 

basically from other available accounts of group cohomology in 
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all of which the theory is developed with an eye on arithmetical 

applications. Our subject here is group theory with a 

cohomological flavour. 

It should be stressed that there is no pretence whatsoever 

at completeness. In fact, the general homological machinery is 

kept to the bare minimum needed for the topics at hand. It 

follows - inevitably - that many important features are barely 

mentioned; and some not at all. 

The audiences were not assumed to know anything about 

homological algebra except the most rudimentary facts. A little 

more knowledge of group theory was presupposed, but nothing at 

all sophisticated. Pull references to all non-trivial or 

non-standard results are always given. 

There is a list of the most frequently quoted books 

immediately following this preface. Each chapter ends with a 

list of all articles and books mentioned in that chapter and 

reference numbers refer to that list at the end of the chapter 

where they occur. 

I was fortunate to have perceptive audiences who frequently 

saved me from errors and obscurities. My thanks go to all who 

participated and in particular to D. Cohen, I. Kaplansky, 

D. Knudson, A. Learner, H. Mochizuki, G. Rinehart, W. Vasconcelos 

and B. Wehrfritz. I owe a special debt of gratitude to 

Urs St~mmbach for his careful and critical reading of large 

sections of these notes. 
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I am a l s o  g r a t e f u l  t o  C o r n e l l  U n i v e r s i t y ,  t h e  U n i v e r s i t y  
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SOME NOTATION AND TERMINOLOGY 

Let G be a group. 

If S is a subset of a G-group M (p.l), <GKS> is the G-subgroup 

generated by S. 

We write <l<S> = <S> = subgroup generated by S. 

FrG(M) = G-Frattini ~roup of M (§7.1). 

dG(M) = minimum number of G-generators of M (§7.1). 

NG(A) = normalizer of A in G. 

CG(A) = centralizer of A in G. 

IGI, Ixl = order of G, x. 

A complete set of representatives of the (right) cosets of A 

An G is called a (right) transversal of A in G. 

G[M = M]G = split extension with kernel M and complement G 

(§l.l). 

= product (Cartesian product). 

~I = coproduct. This is the direct sum in MOdG, the category 

of G-modules. It is *, the free product, in the category of 

groups. 

[a,b7 = a-lb-lab = commutator of a by b. 

If A, B are subsets of G, ~A,B~ = <[a,b]laEA, bEB>. 
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If H, K are subgroups of G and K ~ H (normal), H~ is a factor of G. 

If [H,G] ~ K, the factor is called central. 

A finite series is a family of subgroups (Si; 0 ~ i ~ m), where 

S i ~ Si+ 1. 

If all factors are central, the series is called a central series. 

If G has a finite central series from I to G (i.e., S O = 1 and 

S m = G), then G is called nilpotent. 

If G has a finite series from I to G with all factors abelian 

(cyclic), then G is called soluble (~olycyclic). 

h(G) = Hirsch number of the locally polycyclic G (§8.8). 

If Co(G ) = I, el(G) = centre of G, and Ck+l(G) is the unique 

subgroup so that Ck+l(G)/Ck(G) = Cl(G/~k(G)) , then (Ci(G);i ~ O) 

is called the upper central series of G. 

If G is nilpotent and Cc_I(G) < Cc(G) = G, then c is the class 

of G. 

If G I = G, Gk+ I = [Gk,G] , then (Gi; i ~ I) is called the lower 

central series of G. 

If G (0) = G, G' = [G,G] (= G2) and G (m+l) = (G(m)) ', then 

(G(i); i ~ O) is called the derived series of G. 




