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Preface 

During the academic year 1980-1981 I was teaching at the Technion-the 
Israeli Institute of Technology-in Haifa. The audience was small, but con
sisted of particularly gifted and eager listeners; unfortunately, their back
ground varied widely. What could one offer such an audience, so as to do 
justice to all of them? I decided to discuss representations of natural integers 
as sums of squares, starting on the most elementary level, but with the inten
tion of pushing ahead as far as possible in some of the different directions 
that offered themselves (quadratic forms, theory of genera, generalizations 
and modern developments, etc.), according to the interests of the audience. 

A few weeks after the start of the academic year I received a letter from 
Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for 
the Encyclopedia of Mathematical Sciences under his editorship. I answered 
that I did not have a ready manuscript to offer, but that I could use my notes 
on representations of integers by sums of squares as the basis for one. Indeed, 
about that time I had already started thinking about the possibility of such a 
book and had, in fact, quite precise ideas about the kind of book I wanted it 
to be. 

Specifically, I had read with much pleasure a book by K. Zeller on Summa
bility (Ergebnisse der Mathematik und ihrer Grenzgebiete No. 15, Springer
Verlag). What impressed me mainly was the completeness of the bibliographic 
references. I was moved to emulate this model and write a book on represen
tations by sums of squares that would quote a comfortably large number of 
known results, occasionally with condensed proofs only, but with biblio
graphic references as complete as possible. 

Professor Rota encouraged me to write such a text, and I proceeded. When 
the manuscript was completed, however, it came as a real surprise to me that, 
except for the attempt to have a complete bibliography, there was no re
semblance whatsoever between my text and its model by Zeller. 

The original draft profited greatly from suggestions made by Professors 
George Andrews (The Pennsylvania State University), Marvin Knopp (Tem
ple University), and Olga Taussky-Todd (California Institute of Technology), 
as well as by an anonymous referee. Also, Professor Martin Kneser (University 
of Gottingen) read the whole manuscript at least twice, with incredible care, 
pointing out a large number of errors of omission as well as of commission. To 
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all of them I express my deepest gratitude. Particular thanks are due to all 
colleagues, who called my attention to bibliographic items which had eluded 
me. I also thank Professor Rota; his encouragement was an essential element 
in the decision to develop my notes into the present text. 

At a certain moment the original publisher appeared to have lost interest 
in this venture. I am happy that Springer-Verlag was receptive to the sugges
tion that it take over. Perhaps it is appropriate that the publishers of Limi
tierungsverfahren ... and of "Representations of integers as sums of squares" 
should be the same. I express my gratitude to Springer-Verlag for its support 
and cooperation. 

Finally, I remember fondly my audience at the Technion: their keen interest 
was an important stimulus in the preparation of the notes that grew into this 
manuscript. 

My visit at the Technion had been made possible by a Lady Davis Fellow
ship, for which I also express my gratitude. 

May the reader have as much fun from this volume as the author had in 
writing it! 

Narberth, Pennsylvania 
May 22,1984 

EMIL GROSSW ALD 
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