Representations of Integers as Sums of Squares Emil Grosswald

Representations of Integers as Sums of Squares

Springer-Verlag New York Berlin Heidelberg Tokyo Emil Grosswald Temple University College of Liberal Arts Philadelphia, PA 19122 U.S.A.

With 6 Illustrations

AMS Classifications: 10-01, 10B05, 10B35, 10C05, 10C15

Library of Congress Cataloging in Publication Data Grosswald, Emil. Representations of integers as sums of squares. Bibliography: p. Includes index. 1. Numbers, Natural. 2. Sequences (Mathematics) 3. Forms, Quadratic. I. Title. QA246.5.G76 1985 512'.7 85-4664

© 1985 by Springer-Verlag New York Inc.

Softcover reprint of the hardcover 1st edition 1985

All rights reserved. No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.

Typeset by Asco Trade Typesetting Ltd., Hong Kong.

987654321

ISBN-13: 978-1-4613-8568-4 e-ISBN-13: 978-1-4613-8566-0 DOI: 10.1007/978-1-4613-8566-0

Preface

During the academic year 1980–1981 I was teaching at the Technion—the Israeli Institute of Technology—in Haifa. The audience was small, but consisted of particularly gifted and eager listeners; unfortunately, their back-ground varied widely. What could one offer such an audience, so as to do justice to all of them? I decided to discuss representations of natural integers as sums of squares, starting on the most elementary level, but with the intention of pushing ahead as far as possible in some of the different directions that offered themselves (quadratic forms, theory of genera, generalizations and modern developments, etc.), according to the interests of the audience.

A few weeks after the start of the academic year I received a letter from Professor Gian-Carlo Rota, with the suggestion that I submit a manuscript for the *Encyclopedia of Mathematical Sciences* under his editorship. I answered that I did not have a ready manuscript to offer, but that I could use my notes on representations of integers by sums of squares as the basis for one. Indeed, about that time I had already started thinking about the possibility of such a book and had, in fact, quite precise ideas about the kind of book I wanted it to be.

Specifically, I had read with much pleasure a book by K. Zeller on *Summability* (Ergebnisse der Mathematik und ihrer Grenzgebiete No. 15, Springer-Verlag). What impressed me mainly was the completeness of the bibliographic references. I was moved to emulate this model and write a book on representations by sums of squares that would quote a comfortably large number of known results, occasionally with condensed proofs only, but with bibliographic references as complete as possible.

Professor Rota encouraged me to write such a text, and I proceeded. When the manuscript was completed, however, it came as a real surprise to me that, except for the attempt to have a complete bibliography, there was no resemblance whatsoever between my text and its model by Zeller.

The original draft profited greatly from suggestions made by Professors George Andrews (The Pennsylvania State University), Marvin Knopp (Temple University), and Olga Taussky-Todd (California Institute of Technology), as well as by an anonymous referee. Also, Professor Martin Kneser (University of Göttingen) read the whole manuscript at least twice, with incredible care, pointing out a large number of errors of omission as well as of commission. To all of them I express my deepest gratitude. Particular thanks are due to all colleagues, who called my attention to bibliographic items which had eluded me. I also thank Professor Rota; his encouragement was an essential element in the decision to develop my notes into the present text.

At a certain moment the original publisher appeared to have lost interest in this venture. I am happy that Springer-Verlag was receptive to the suggestion that it take over. Perhaps it is appropriate that the publishers of *Limitierungsverfahren*... and of "Representations of integers as sums of squares" should be the same. I express my gratitude to Springer-Verlag for its support and cooperation.

Finally, I remember fondly my audience at the Technion: their keen interest was an important stimulus in the preparation of the notes that grew into this manuscript.

My visit at the Technion had been made possible by a Lady Davis Fellowship, for which I also express my gratitude.

May the reader have as much fun from this volume as the author had in writing it!

Narberth, Pennsylvania May 22, 1984 Emil Grosswald

Contents

Preface	v
Introduction	1
CHAPTER 1	_
Preliminaries	5
§1. The Problems of Representations and Their Solutions	5
§2. Methods	6
§3. The Contents of This Book	9
§4. References	11
§5. Problems	11 11
§6. Notation	11
CHAPTER 2	
Sums of Two Squares	13
§1. The One Square Problem	13
§2. The Two Squares Problem	13
\$3. Some Early Work	14
§4. The Main Theorems	15
§5. Proof of Theorem 2	16
§6. Proof of Theorem 3§7. The "Circle Problem"	18 20
§7. The Chele Flobleni §8. The Determination of $N_2(x)$	20
§9. Other Contributions to the Sum of Two Squares Problem	22
§10. Problems	23
CHAPTER 3	
Triangular Numbers and the Representation of Integers as Sums	
of Four Squares	24
§1. Sums of Three Squares	24
§2. Three Squares, Four Squares, and Triangular Numbers	25
§3. The Proof of Theorem 2	23
§4. Main Result	30
§5. Other Contributions	31
§6. Proof of Theorem 4	31
§7. Proof of Lemma 3	33

69 Shatah of Josephi's Droof of Theorem 4	35
 Sketch of Jacobi's Proof of Theorem 4 Brahland 	
§9. Problems	36
CHAPTER 4	
Representations as Sums of Three Squares	38
§1. The First Theorem	38
§2. Proof of Theorem 1, Part I	38
§3. Early Results	39
§4. Quadratic Forms	39
§5. Some Needed Lemmas	42
§6. Proof of Theorem 1, Part II	46
§7. Examples	49
§8. Gauss's Theorem	51
§9. From Gauss to the Twentieth Century	53
§10. The Main Theorem	54
§11. Some Results from Number Theory	55
§12. The Equivalence of Theorem 4 with Earlier Formulations	57
§13. A Sketch of the Proof of (4.7')	59
§14. Liouville's Method	60
§15. The Average Order of $r_3(n)$ and the Number of Representable	
Integers	61
§16. Problems	64

CHAPTER 5

Legendre's Theorem	
§1. The Main Theorem and Early Results	66
§2. Some Remarks and a Proof That the Conditions Are Necessary	67
§3. The Hasse Principle	68
§4. Proof of Sufficiency of the Conditions of Theorem 1	68
§5. Problems	71

CHAPTER 6

Representations of Integers as Sums of Nonvanishing Squares		72
§1.	Representations by $k \ge 4$ Squares	72
§2.	Representations by k Nonvanishing Squares	72
§3.	Representations as Sums of Four Nonvanishing Squares	74
§4.	Representations as Sums of Two Nonvanishing Squares	75
§5.	Representations as Sums of Three Nonvanishing Squares	75
§6.	On the Number of Integers $n \leq x$ That Are Sums of k Nonvanishing	
	Squares	79
§7.	Problems	83

CHAPTER 7

The Problem of the Uniqueness of Essentially Distinct	
Representations	84
§1. The Problem	84
§2. Some Preliminary Remarks	85

Contents

The Case $k = 4$	85
The Case $k \ge 5$	86
The Cases $k = 1$ and $k = 2$	87
The Case $k = 3$	88
Problems	89
	The Case $k \ge 5$ The Cases $k = 1$ and $k = 2$ The Case $k = 3$

ix

CHAPTER 8

Theta Functions	91
§1. Introduction	91
§2. Preliminaries	91
§3. Poisson Summation and Lipschitz's Formula	92
§4. The Theta Functions	95
§5. The Zeros of the Theta Functions	97
§6. Product Formulae	99
§7. Some Elliptic Functions	101
§8. Addition Formulae	104
§9. Problems	105

CHAPTER 9

Rep	resentations of Integers as Sums of an Even Number of	
Squ	ares	107
§1.	A Sketch of the Method	107
§2.	Lambert Series	108
§3.	The Computation of the Powers θ_3^{2k}	112
§4.	Representation of Powers of θ_3 by Lambert Series	114
§5.	Expansions of Lambert Series into Divisor Functions	117
§6.	The Values of the $r_k(n)$ for Even $k \leq 12$	121
§7.	The Size of $r_k(n)$ for Even $k \leq 8$	121
§8.	An Auxilliary Lemma	123
§9.	Estimate of $r_{10}(n)$ and $r_{12}(n)$	124
§10.	An Alternative Approach	126
§11.	Problems	127

CHAPTER 10

Various Results on Representations as Sums of Squares		128
§1.	Some Special, Older Results	128
§2.	More Recent Contributions	129
§3.	The Multiplicativity Problem	131
§4.	Problems	133

CHAPTER 11

Preliminaries to the Circle Method and the Method of Modular	
Functions	134
§1. Introduction	134
§2. Farey Series	136
§3. Gaussian Sums	137
§4. The Modular Group and Its Subgroups	139

§5.	Modular Forms	143
§6.	Some Theorems	145
§7.	The Theta Functions as Modular Forms	146
§8.	Problems	147

CHAPTER 12

The Circle Method	149
§1. The Principle of the Method	149
§2. The Evaluation of the Error Terms and Formula for $r_s(n)$	153
§3. Evaluation of the Singular Series	156
§4. Explicit Evaluation of \mathscr{S}	160
§5. Discussion of the Density of Representations	170
§6. Other Approaches	173
§7. Problems	173

CHAPTER 13

Alternative Methods for Evaluating $r_s(n)$	175
§1. Estermann's Proof	175
§2. Sketch of the Proof by Modular Functions	178
§3. The Function $\psi_s(\tau)$	180
§4. The Expansion of $\psi_s(\tau)$ at the Cusp $\tau = -1$	182
§5. The Function $\theta^{s}(\tau)$	184
§6. Proof of Theorem 4	184
§7. Modular Functions and the Number of Representations by Quadratic	
Forms	185
§8. Problems	186

CHAPTER 14

Recent Work		188
§1.	Introduction	188
§2.	Notation and Definitions	189
§3.	The Representation of Totally Positive Algebraic Integers as Sums	
	of Squares	192
§4.	Some Special Results	194
§5.	The Circle Problem in Algebraic Number Fields	196
§6.	Hilbert's 17th Problem	197
§7.	The Work of Artin	198
§8.	From Artin to Pfister	201
§9.	The Work of Pfister and Related Work	203
§10.	Some Comments and Additions	207
§11.	Hilbert's 11th Problem	208
§12.	The Classification Problem and Related Topics	209
§13.	Quadratic Forms Over \mathbb{Q}_p	212
§14.	The Hasse Principle	216

х

Contents	xi
APPENDIX Open Problems	219
References	221
Bibliography	231
Addenda	242
Author Index	243
Subject Index	247