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Preface

Numerical treatment of two-phase incompressible flow problems

In the past few decades there has been tremendous progress in the develop-
ment and analysis of numerical methods for one-phase incompressible Stokes
and Navier-Stokes equations. There is an extensive literature on space- and
time discretization methods, iterative solvers and other numerical issues, e.g.,
implementation aspects, related to this problem class. This literature com-
prises a huge number of papers and many monographs. The research activities
resulted in output ranging from new fundamental mathematical insights to
software packages that can be used for the simulation of incompressible flow
problems. Nowadays open source and commercial software packages are avail-
able that perform satisfactory when used as black or gray box solvers for a
fairly large class of incompressible one-phase flow problems. Although very big
progress has been made, there are still important topics which require further
research. For example, in the field of development and analysis of numerical
methods for the simulation of turbulent flows, non-Newtonian flows and flows
coupled with chemistry the state of the art is not satisfactory, yet.

The work that has been done on numerical methods for one-phase incom-
pressible Navier-Stokes equations forms a solid basis for an extension to the
class of two-phase incompressible flow problems. In the past decade research
on this topic has started. Until now most research results in this field have
been published in the engineering literature. There are only few papers that
have appeared in the numerical mathematics literature and address rigorous
mathematical analysis of methods for two-phase flow problems. This book is
meant to give an overview of, and introduction to this field of (analysis of)
numerical methods for incompressible two-phase flow problems. We do not
know of any other monograph devoted to this topic. In our opinion, time is
ripe for substantial progress in the field of numerical analysis of methods for
two-phase incompressible flows. There are several important issues relevant
for the simulation of two-phase flows that are non-existent in one-phase in-
compressible flow problems. We briefly address a few of these:
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Numerical treatment of the unknown interface. Even in the simplest case of
immiscible fluids, i.e. no phase transition or evaporation phenomena, the nu-
merical treatment of the unknown interface is a difficult task. Several numer-
ical techniques are used, ranging from interface tracking, based on an explicit
parametrization of the interface, to (VOF or level set) interface capturing
methods, which are based on some indicator function. Until now many prob-
lems related to e.g. the coupling between the interface evolution and fluid
dynamics, mass conservation, accuracy of discretizations and treatment of
topological singularities (droplet collision) are largely unsolved. Only very
few rigorous mathematical analyses related to these problems are known.
Numerical approximation of surface tension forces. The surface tension force
is localized on the interface and in many two-phase systems it determines the
flow behavior to a large extent. In case of topological singularities it is not
obvious how this force should be modeled. An accurate numerical approxi-
mation of this force is often of major importance for a successful simulation,
since an insufficient treatment leads to numerical oscillations at the interface
(so-called spurious velocities). Only few approximation methods are known
and analyses of these methods are very scarce.
Simulation of mass and heat transport from one phase into the other. The
transport of a dissolved species from one phase into the other is usually mod-
eled by convection-diffusion equations in the two phases that are coupled by a
certain condition at the interface. If the species can attach to the interface this
gives rise to (open) modeling problems. In general the concentration of the
species is discontinuous across the interface. In that case one has to determine
numerically a solution of a transport problem that is discontinuous across an
evolving unknown interface. This topic has hardly been investigated in the
literature. In certain systems it may be important to model a dependence of
the surface tension on the concentration of the dissolved species or on the
fluid temperature at the interface. If this is the case it results in a compli-
cated strongly nonlinear coupling between the two-phase fluid dynamics and
the mass or heat transport. The problem of how to handle numerically this
coupling has hardly been addressed.
Simulation of surfactants, which are transported on the interface. It may hap-
pen that in the two-phase system there is a species (called tenside or sur-
factant) which adheres to the interface and is transported on the interface
due to convection and molecular diffusion. An interesting modeling problem
is how adsorption and desorption effects can be described. This surfactant
transport results in a convection-diffusion equation on the interface only. As
in the case of mass or heat transport discussed above there may be a depen-
dence of the surface tension on the surfactant concentration. First studies of
numerical methods for solving such surfactant transport equations, coupled
with two-phase fluid dynamics, have appeared only recently.
Further interesting issues, which however will not be treated in this mono-
graph, are the modeling and numerical treatment of evaporation, phase tran-
sition, topological singularities and reaction processes at the interface.
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In this monograph we address topics, such as the four mentioned above, that
are important in the numerical simulation of two-phase incompressible flow
problems. We give a fairly complete treatment of such flow problems in the
sense that we derive models, discuss appropriate weak formulations, introduce
and analyze discretization methods, investigate iterative solvers and finally
pay attention to implementation aspects and present results of numerical ex-
periments. On the other hand we restricted ourselves to incompressible flows
and do not consider important phenomena like phase transition and topo-
logical singularities. Also concerning the class of methods we made a severe
restriction: we only treat discretizations based on finite elements. Within the
problem and method classes considered in this book we tried to give a fairly
complete overview. We do not present an overview of work that lies outside
this problem class, e.g., flow problems with phase transition or compressible
two-phase flows, or outside this method class, e.g., finite difference discretiza-
tions of two-phase flows.

Contents of this monograph

We start with an introductory chapter in which the basic models for one-
and two-phase incompressible flows, for mass transport between the phases
and for surfactant transport are derived. The book consists of five parts. We
outline the main topics treated in these parts.

Part I. We first consider the incompressible Stokes and Navier-Stokes equa-
tions that model a one-phase flow. We treat numerical methods for these
one-phase flows that are also used as basic building blocks in the simula-
tion of two-phase flows, which is studied in Part II. The space discretizations
that we consider are based on finite element methods. Therefore one needs
suitable variational (weak) formulations. For this we collect some results on
function spaces and variational formulations for (Navier-) Stokes equations
known from the standard literature. We explain Hood-Taylor finite element
discretization methods on multilevel tetrahedral triangulations and popular
time discretization methods for Navier-Stokes equations. The topic of efficient
iterative solvers is addressed. We give an introduction to multigrid methods
and discuss certain Schur complement preconditioners for saddle point prob-
lems. In this part as well as in the other parts, for a specific method (or
approach) we often address three aspects: 1. We try to give a clear descrip-
tion of the method. 2. A mathematical analysis of certain important aspects
(e.g. discretization error, rate of convergence), often for a simplified model
problem, is presented. 3. The method is implemented and results of numerical
experiments, which illustrate certain phenomena, are presented.
Part II. We consider the fluid-dynamics in a two-phase incompressible flow
problem with surface tension. The issue of interface representation is treated
and a weak formulation of a two-phase Navier-Stokes equation with a localized
surface tension force is given. Finite element discretization methods are de-
veloped and analyzed. In particular a special method for the discretization of
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the surface tension force and so-called extended finite element spaces (XFEM)
for the pressure approximation are studied. Time discretization schemes are
derived and finally iterative solvers are considered.
Part III. We address the numerical simulation of mass transport between
the two phases. An appropriate weak formulation is derived. Based on this,
finite element space discretization methods and time discretization schemes
are discussed. We distinguish between problems with a stationary and with
a non-stationary interface. An important issue is the numerical treatment of
the discontinuity in the solution across the interface.
Part IV. In this part the convection-diffusion problem which models transport
of surfactants is treated. Suitable weak formulations are discussed. Finite ele-
ment methods based on both interface tracking and interface capturing tech-
niques are presented.
Part V. This is an appendix consisting of two chapters. In the first chapter
we collect some elementary results from differential geometry. In the second
chapter we give some main results on variational problems in Hilbert spaces
(e.g. Lax-Milgram lemma) and on Schur complement preconditioning of sad-
dle point problems in Hilbert spaces.

Among the many numerical approaches treated in this monograph there are
some that deserve special attention because these turned out to be particu-
larly useful for the efficient simulation of our two-phase flow problems or we
consider them to be promising for future applications. Therefore we emphasize
these already in this preface:

• The finite element spaces that we use are based on a hierarchy of nested
tetrahedral triangulations. The nested hierarchy allows very easy and effi-
cient local refinement and coarsening routines. A (strong) local refinement
close to the (evolving) interface in general enhances efficiency significantly.
Furthermore, due to the nested hierarchy the use of efficient multigrid
solvers is relatively easy.

• In our applications the surface tension is an important driving force. An
accurate discretization of this force is essential for reliable simulation re-
sults. We use a Laplace-Beltrami approach in which the second derivative
(curvature) in the surface tension functional can be avoided by partial in-
tegration. This technique is based on the representation of the curvature
as a Laplace-Beltrami operator applied to the identity. We introduce and
analyze an accurate variant of this method. In this method we use a hybrid
version of the level set method in the sense that the level set equation is
used to describe the evolution of the (implicitly given) interface but for
the evaluation of the discrete surface tension functional we need an explicit
reconstruction of the interface.

• In the class of two-phase flow problems that we consider there are several
quantities which in general are discontinuous across the interface, namely
viscosity, density, pressure and, if mass transport is considered, the concen-
tration of a dissolved species. The (approximate) interface is not aligned
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with the triangulation and thus we have unknowns (pressure, concentra-
tion) that are discontinuous within certain elements. For an accurate ap-
proximation of these unknowns we use the extended finite element method
(XFEM), which has been used in the literature for other applications (e.g.
crack propagation in continuum mechanics).

• If mass transport is considered then, due to the so-called Henry interface
condition, the ratio of the unknown concentrations on the two sides of
the interface has to be equal to a given constant. In general this (Henry)
constant is not equal to one, which implies a discontinuity. To satisfy this
interface condition we combine the XFEM approach with a technique due
to Nitsche, in which the bilinear form that represents the partial differential
equation is modified such that the jump relation is automatically satisfied
in a certain weak sense.

• For one-phase flows and two-phase flows with a stationary interface we use
the method of lines (“first space, then time”) or the Rothe approach (“first
time, then space”) to obtain a fully discrete problem. For two-phase flow
problems with a non-stationary interface the method of lines approach is
not appropriate. The Rothe method is still useful but also space-time finite
element methods are very suitable. We use the latter method class for the
mass transport and for the surfactant transport equation.

• For the spatial discretization of the surfactant transport equation on the
interface we introduce and analyze a new interface finite element method.
The main idea of this method is the use of the trace of a standard outer
finite element space (used for discretization of the flow variables) for dis-
cretization on the reconstructed approximate interface.

• In the time discretization we use implicit schemes in which the flow vari-
ables and the level set function are fully coupled. In each time step a
nonlinear problem for these unknowns has to be solved. Due to the sur-
face tension term there is a strongly nonlinear coupling between the flow
variables and level set unknowns. We treat efficient iterative decoupling
strategies.

• After discretization, decoupling and linearization one obtains large sparse
linear systems with a saddle point structure. We use block preconditioners
for the efficient solution of these linear systems. Special Schur complement
preconditioners are presented.

Readership

We intended to make a monograph that is of interest for MSc and PhD
students with a specialization in Numerical Analysis or Computational
Engineering who want to get acquainted with numerical methods for two-
phase incompressible flows. Basic knowledge of the numerical treatment of
one-phase flow problems is assumed. Some of the topics presented may also
be of interest for researchers already working in the field of numerical simu-
lation of two-phase flows.
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Further material

Most of the methods treated in this monograph have been implemented in a
software package called DROPS, which has been developed at the Chair for
Numerical Mathematics at RWTH Aachen. All numerical experiments, the
results of which are given in this book, were performed with this package. More
background information on DROPS and on publications from our research
group is available on the website

www.igpm.rwth-aachen.de/DROPS/

The DROPS package is open source software under the GNU Lesser General
Public License.
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