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PREF ACE TO THE 
SECOND EDITION 

This edition differs from the original mainly by the addition of a 
seventh chapter, on the c1assical invariant theory of finite reflection 
groups. Most of the changes in the original six chapters are corrections of 
mi sprints and minor errors. We are indebted, however, to Klaus Benkert 
of the RWTH Aachen for pointing out to us Proposition 5.1.5, making 
possible a neater discussion of the positive definiteness of marked graphs. 
We have also added an appendix listing the Schoenflies and International 
notations for crystallographic point groups. 

Since many beginning German courses in the United States seem no 
longer to inc1ude an introduction to German script, it may be helpful to 
some readers if the script letters used in Chapter 7 are introduced here with 
their Roman counterparts. 

German 
Script a b c 

Roman a b c F I K L P Q 

Our thanks go to David Surowski and Dick Pierce for reading drafts 
of Chapter 7 and suggesting corrections and improvements, to Helen 
Grove for typing the new chapter and, belatedly, to Sandra Grove for 
proofreading the first six. 

August 1984 L.c.G. AND C.T.B. 
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PREF ACE TO THE FIRST EDITION 

This book began as lecture notes for a course given at the University 
of Oregon. The course, given for undergraduates and beginning graduate 
students, follows immediately after a conventional course in linear 
algebra and serves two chief pedagogical purposes. First, it reinforces 
the students' newly won knowledge of linear algebra by giving applica
tions of several of the theorems they have learned and by giving geo
metrical interpretations for some ofthe notions oflinear algebra. Second, 
some students take the course before or concurrently with abstract 
algebra, and they are armed in advance with a collection offairly concrete 
non trivial examples of groups. 

The first comprehensive treatment of finite reflection groups was 
given by H. S. M. Coxeter in 1934. In [9] he completely c1assified the 
groups and derived several of their properties, using mainly geometrical 
methods. He later inc1uded a discussion ofthe groups in his book Regular 
Po[ytopes [10]. Another discussion, somewhat more algebraic in nature, 
was given by E. Witt in 1941 [37]. An algebraic account of reflection 
groups was presented by P. Cartier in the Chevalley Seminar reports 
(see [6]). Another has recently appeared in N. Bourbaki's chapters on 
Lie groups and Lie algebras [3]. 

Since the sources cited above do not seem to be easily accessible to 
most undergraduates, we have attempted to give a discussion of finite 
reflection groups that is as elementary as possible. We have tried to reach 
amiddIe ground between Coxeter and Bourbaki. Our approach is 
algebraic, but we have retained some of the geometrical flavor of 
Coxeter's approach. 

vii 



viii Preface to the First Edition 

Chapter 1 introduces some of the terminology and notation used 
later and indicates prerequisites. Chapter 2 gives a reasonably thorough 
account of all finite subgroups of the orthogonal groups in two and three 
dimensions. The presentation is somewhat less formal than in succeeding 
chapters. For instance, the existence of the icosahedron is accepted as an 
empirical fact, and no formal proof of existence is included. Throughout 
most of Chapter 2 we do not distinguish between groups that are "geo
metrically indistinguishable," that is, conjugate in the orthogonal group. 
Very little of the material in Chapter 2 is actually required for the sub
sequent chapters, but it serves two important purposes: It aids in the 
development of geometrical insight, and it serves as a source of illustrative 
examples. 

There is a discussion offundamental regions in Chapter 3. Chapter 4 
provides a correspondence between fundamental reflections and funda
mental regions via a discussion of root systems. The actual classification 
and construction of finite reflection groups takes place in Chapter 5. 
where we have in part followed the methods of E. Witt and B. L. van der 
Waerden. Generators and relations for finite reflection groups are 
discussed in Chapter 6. There are historical remarks and suggestions for 
further reading in a Post lude. 

Since we have written with the student in mind we have included 
considerable detail and a number of illustrative examples. Exercises are 
included in every chapter but the first. The results of some of the exercises 
are used in the body of the text. The list of identifications in Exercise 5.7 
was worked out by one of our students, Leslie Wilson. 

We wish to thank James Humphreys. Otto KegeL and Louis Solomon 
for reading the manuscript and making numerous excellent suggestions. 
We also derived considerable benefit from Charles Curtis's lectures on 
root systems and Chevalley groups. 

July 1970 CT.B. AND L.CG. 
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