Ergebnisse der Mathematik und ihrer Grenzgebiete

3. Folge \cdot Band 9

A Series of Modern Surveys in Mathematics

Editorial Board

E. Bombieri, Princeton S. Feferman, Stanford
N. H. Kuiper, Bures-sur-Yvette P. Lax, New York
R. Remmert (Managing Editor), Münster
W. Schmid, Cambridge, Mass. J-P. Serre, Paris
J. Tits, Paris

Mikhael Gromov

Partial Differential Relations

Springer-Verlag Berlin Heidelberg GmbH

Mikhael Gromov

Institute des Hautes Etudes Scientifiques 35, route de Chartres F-91440 Bures-sur-Yvette France

Mathematics Subject Classification (1980): 53, 58

ISBN 978-3-642-05720-5

Library of Congress Cataloging in Publication Data Gromov, Mikhael, 1943– Partial differential relations. (Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 9) Includes index. 1. Geometry, Differential. 2. Differential equations, Partial. 3. Immersions (Mathematics) I. Title. II. Series: Ergebnisse der Mathematik und ihrer Grenzgebiete; 3. Folge, Bd. 9. QA641.G76 1986 515.3'53 86-13906 ISBN 978-3-642-05720-5 ISBN 978-3-662-02267-2 (eBook) DOI 10.1007/978-3-662-02267-2

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986 Originally published by Springer-Verlag Berlin Heidelberg New York in 1986 Softcover reprint of the hardcover 1st edition 1986

Typesetting: ASCO, Hong Kong

2141/3020 - 543210

Foreword

The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space).

Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some *apriori estimates* which locate a possible solution in a given function space.

We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions.

We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions.

Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field.

The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.

I am grateful to my friends and colleagues with whom I have discussed various aspects of the subject in the course of years. The book took final shape under unrelenting criticism by Nico Kuiper directed at earlier drafts. I thank Mme V. Houllet for typing the manuscript, Mari Anne Gazdick for rectifying my English and Mme J. Martin for the help with a multitude of last minute corrections.

Bures-sur-Yvette, May 1986

M. Gromov

Contents

Part 1.	A Survey of Basic Problems and Results	1
1.1	Solvability and the Homotopy Principle	1
1.1.1	Jets, Relations, Holonomy	1
1.1.2	The Cauchy-Riemann Relation, Oka's Principle and the Theorem of	-
	Grauert	4
1.1.3	Differentiable Immersions and the <i>h</i> -Principle of Smale-Hirsch .	6
1.1.4	Osculating Spaces and Free Maps	8
1.1.5	of Nash and Kuiper	10
1.2	Homotopy and Approximation	13
1.2.1	Classification of Solutions by Homotopy and the Parametric	
	h-Principle	13
1.2.2	Density of the <i>h</i> -Principle in the Fine Topologies	18
1.2.3	Functionally Closed Relations	22
1.3	Singularities and Non-singular Maps	26
1.3.1	Singularities as Differential Relations	26
1.3.2	Genericity, Transversality and Thom's Equisingularity Theorem .	30
1.4	Localization and Extension of Solutions	35
1.4.1	Local Solutions of Differential Relations	35
1.4.2	The <i>h</i> -Principle for Extensions; Flexibility and Micro-flexibility .	39
1.4.3	Ordinary Differential Equations and "Zero-Dimensional" Relations	44
1.4.4	The <i>h</i> -Principle for the Cauchy Extension Problem	46
Part 2.	Methods to Prove the <i>h</i> -Principle	48
2.1	Removal of Singularities	48
2.1.1	Immersions and k-Mersions $V \to \mathbb{R}^q$ for $q > k$	48
2.1.2	Immersions and Submersions $V \rightarrow W$	52
2.1.3	Folded Maps $V^n \to W^q$ for $q \leq n$	54
2.1.4	Singularities and the Curvature of Smooth Maps	61
2.1.5	Holomorphic Immersions of Stein Manifolds	65

2.2	Continuous Sheaves	74
2.2.1	Flexibility and the <i>h</i> -Principle for Continuous Sheaves	75
2.2.2	Flexibility and Micro-flexibility of Equivariant Sheaves	78
2.2.3	The Proof of the Main Flexibility Theorem	80
2.2.4	Equivariant Microextensions	84
225	Local Compressibility and the Proof of the Microextension	01
2.2.0	Theorem	87
226	An Application. Inducing Fuclidean Connections	93
2.2.0	Non-flexible Sheaves	98
2.2.1		70
2.3	Inversion of Differential Operators	114
2.3.1	Linearization and the Linear Inversion	114
2.3.2	Basic Properties of Infinitesimally Invertible Operators	117
2.3.3	The Nash (Newton-Moser) Process	121
2.3.4	Deep Smoothing Operators	123
2.3.5	The Existence and Convergence of Nash's Process	131
2.3.6	The Modified Nash Process and Special Inversions of the	
	Operator \mathscr{D}	139
2.3.7	Infinite Dimensional Representations of the Group $Diff(V)$	145
238	Algebraic Solution of Differential Equations	148
2.3.0	ingeorate solution of Differential Equations	110
2.4	Convex Integration	168
2.4.1	Integrals and Convex Hulls.	168
2.4.2	Principal Extensions of Differential Relations	174
2.4.3	Ample Differential Relations	180
2.4.4	Fiber Connected Relations and Directed Immersions	183
2.4.5	Directed Embeddings and the Relative <i>h</i> -Principle	189
2.4.6	Convex Integration of Partial Differential Equations	194
2.4.7	Underdetermined Evolution Equations	195
2.4.8	Triangular Systems of P.D.E.	198
2.4.9	Isometric C^1 -Immersions	201
2.4.10	Isometric Maps with Singularities	207
2.4.11	Equidimensional Isometric Maps	214
2.4.12	The Regularity Problem and Related Questions in the Convex	
	Integration	219
	-	
Part 3.	Isometric C^{∞} -Immersions	221
3.1	Isometric Immersions of Riemannian Manifolds	221
311	Nach's Twist and Annrovimate Immersions, Isometric Embeddings	
5.1.1	into \mathbb{R}^q	221
312	Isometric Immersions $V^n \rightarrow W^q$ for $a > (n+2)(n+5)/2$	221
313	Convex Cones in the Space of Metrics	227
314	Inducing Forms of Degree $d > 2$	231
315	Immersions with a Prescribed Curvature	232
5.1.5		499

3.1.6 3.1.7 3.1.8 3.1.9	Extensions of Isometric Immersions			
3.2	Isometric Immersions in Low Codimension			
3.2.1 3.2.2 3.2.3 3.2.4	Parabolic Immersions			
3.3	Isometric C^{∞} -Immersions of Pseudo-Riemannian Manifolds 306			
3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	Local Pseudo-Riemannian Immersions			
3.4	Symplectic Isometric Immersions			
3.4.1 3.4.2 3.4.3 3.4.4	Immersions of Exterior Forms328Symplectic Immersions and Embeddings333Contact Manifolds and Their Immersions338Basic Problems in the Symplectic Geometry340			
References				
Author 1	(ndex			
Subject Index				