D

Progress in Mathematics Vol. 25

Edited by J. Coates and S. Helgason

Springer Science+ Business Media, LLC

Phillip A. Griffiths Exterior Differential Systems and the Calculus of Variations

1983

Springer Science+ Business Media, LLC Phillip A. Griffiths Department of Mathematics Harvard University Cambridge, MA 02138

Author:

Library of Congress Cataloging in Publication Data Griffiths, Phillip. Exterior differential systems and the calculus of variations. (Progress in mathematics ; v. 25) Includes index. 1. Calculus of variations. 2. Exterior differential systems. I. Title. II. Series: Progress in mathematics (Cambridge, Mass.) ; v. 25. QA316.G84 1982 515'.64 82-17878

CIP-Kurztitelaufnahme der Deutschen Bibliothek

<u>Griffiths, Phillip A.:</u> Exterior differential systems and the calculus of variations / Phillip A. Griffiths. - Boston; Basel; Stuttgart : Birkhauser, 1982. (Progress in mathematics; Vol. 25)

NE: GT

ISBN 978-0-8176-3103-1 ISBN 978-1-4615-8166-6 (eBook) DOI 10.1007/978-1-4615-8166-6

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the copyright owner.

© 1983 Springer Science+Business Media New York Originally published by Birkhäuser Boston in 1983 To the memory of my mother Jeanette Field Griffiths TABLE OF CONTENTS

INTRODUCTION			
0.	PRELIMINARIES		
	a) Notations from Manifold Theory b) The Language of Jet Manifolds c) Frame Manifolds d) Differential Ideals e) Exterior Differential Systems		
I.	EULER-LAGRANGE EQUATIONS FOR DIFFERENTIAL SYSTEMS WITH ONE INDEPENDENT VARIABLE	32	
	 a) Setting up the Problem; Classical Examples b) Variational Equations for Integral Manifolds of Differential Systems c) Differential Systems in Good Form; the Derived Flag, Cauchy Characteristics, and Prolongation of Exterior Differential Systems d) Derivation of the Euler-Lagrange Equations; Examples e) The Euler-Lagrange Differential System; Non-Degenerate Variational Problems; Examples 		
II.	FIRST INTEGRALS OF THE EULER-LAGRANGE SYSTEM; NOETHER'S THEOREM AND EXAMPLES	107	
	 a) First Integrals and Noether's Theorem; Some Classical Examples; Variational Problems Algebraically Integrable by Quadratures b) Investigation of the Euler-Lagrange System for Some Differential-Geometric Variational Problems: i) ∫ κ² ds for Plane Curves; ii) ∫ κ² ds for Space Curves; and iv) Delauney Problem. 		
III.	EULER EQUATIONS FOR VARIATIONAL PROBLEMS IN HOMOGENEOUS SPACES	161	
	 a) Derivation of the Equations: i) Motivation; ii) Review of the Classical Case; iii) the General Euler Equations b) Examples: i) the Euler Equations Associated to ∫ κ²/2 ds for Curves in IEⁿ; ii) Some Problems as in i) but for Curves in Sⁿ; iii) Euler Equations Associated to Non-degenerate Ruled Surfaces 		

١٧.	ENDPOINT CONDITIONS; JACOBI EQUATIONS AND THE 2 nd VARIATION; CONJUGATE POINTS; FIELDS AND THE HAMILTON-JACOBI EQUATION; THE LAGRANGE PROBLEM		
	d)	Examples	
APPEND		MISCELLANEOUS REMARKS AND EXAMPLES Problems with Integral Constraints; Examples Classical Problems Expressed in Moving Frames	310

INDEX	329
BIBLIOGRAPHY	332

LIST OF COMMONLY USED NOTATIONS

 $(\underline{\text{Note}}:$ The references for the undefined terms used below may be found in the index.)

A*(X)	Exterior algebra of smooth differential forms on a manifold X
{Σ}	Algebraic ideal in A*(X) generated by a set Σ of forms on X
(Ι,ω)	Exterior differential system with indepen- dence condition
V(I,w)	Set of integral manifolds of (1, ω)
Τ _Ν (V(I,ω))	Tangent space to $V(I,\omega)$ at N
(Ι,ω;φ)	Variational Problem (cf. Chapter I, Sec. a)
$\Phi: V(\mathbf{I}, \omega) \rightarrow \mathbf{R}$	Functional on V(1,ω)
δΦ:T _N (Ι,ω)→IR	Differential of Φ
V(Ι,ω;[A,B]))	Subset of $V(1,\omega)$ given by endpoint conditions
Τ _N (V(I,ω;[A,B]))	Tangent space to $V(1,\omega;[A,B])$
≡ mod I	Congruence modulo an ideal $I \subset A^{\star}(X)$
Ē	Congruence modulo the image of I∧I→A [*] (X) (cf. (II.b.4))
PE	Projectivization of a vector space E
θ _N	Restriction of $\theta \in A^{*}(X)$ to a submanifold $N \subset X$
$\Theta = \Theta$	Exterior derivative of a differential form; little θ is frequently denoted by capital Θ
F(•)	Frame manifold
L _ν φ	Lie derivative of a form ϕ along a vector field v
Υ	Momentum space associated to $(1,\omega;\phi)$
Q	Reduced momentum space associated to (1, $\omega;\phi$)