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LIST OF C0~1t,10NLY USED NOTATIONS 

(Note: The references for the undefined terms used below may be found in 
t~ndex.) 

A''' (X) 

{1:} 

(I ,w) 

V( I ,w) 

TN(V(I,w)) 

(I ,w;liJ) 

¢:V(I,w)->-IR 

O¢:TN(I ,w) ->-IR 

V( I ,w; (A,B])) 

TN(V(I ,w; [A, B))) 

- mod I 

PE 

d8 G 

F (.) 

y 

Q 

Exterior algebra of smooth differential 
forms on a manifold X 

Algebraic ideal in 
set L of forms on 

generated by a 

Exterior differential system with indepen­
dence condition 

Set of integral manifolds of (I ,w) 

Tangent space to V(l ,w) at N 

Variational Problem (cf. Chapter I, Sec. a) 

Functional on V(l,w) 

Differential of ¢ 

Subset of V(l ,w) given by endpoint 
conditions 

Tangent space to V( I ,w; [A, B]) 

Congruence modulo an ideal I cA1'(X) 

Congruence modulo the image of I A I->- A'''(X) 
(cf. (ll.b.4)) 

Projectivization of a vector space E 

Restriction of 8EA'''(X) to a submanifold 
NcX 

Exterior derivative of a differential form; 
1 ittle 8 is frequently denoted by capital G 

Frame manifold 

Lie derivative of a form l(J along a vector 
field v 

Momentum space associated to (I ,w;l(J) 

Reduced momentum space associated to 
(I ,w ;liJ) 


