Grundlehren der mathematischen Wissenschaften 238

A Series of Comprehensive Studies in Mathematics

Editors

S.S. Chern J.L. Doob J. Douglas, jr. A. Grothendieck E. Heinz F. Hirzebruch E. Hopf S. Mac Lane W. Magnus M.M. Postnikov W. Schmidt D.S. Scott K. Stein J. Tits B.L. van der Waerden

l

Managing Editors

B. Eckmann J.K. Moser

Colin C. Graham O. Carruth McGehee

Essays in Commutative Harmonic Analysis

Springer-Verlag New York Heidelberg Berlin Colin C. Graham

Department of Mathematics Northwestern University Evanston, Illinois 60201 USA O. Carruth McGehee

Department of Mathematics Louisiana State University Baton Rouge, Louisiana 70803 USA

AMS Subject Classifications 43A25, 43A45, 43A46, 43A70, 42A45, 42A55, 42A63, 43A10

With 1 Figure

Library of Congress Cataloging in Publication Data

Graham, Colin C. Essays in commutative harmonic analysis.

(Grundlehren der mathematischen Wissenschaften; 238) Bibliography: p.
Includes index.
1. Harmonic analysis. 2. Locally compact abelian groups. 3. Fourier transformations.
I. McGehee, O. Carruth, joint author. II. Title.
III. Series.
QA403.G7 515'.2433 79-13096

All rights reserved.

No part of this book may be translated or reproduced in any form without written permission from Springer-Verlag.

© 1979 by Springer-Verlag New York Inc. Softcover reprint of the hardcover 1st edition 1979

987654321

ISBN-13: 978-1-4612-9978-3 e-ISBN-13: 978-1-4612-9976-9 DOI: 10.1007/978-1-4612-9976-9

To my wife, Jill Wescott Graham

To my father and mother, Oscar M. McGehee and Louise Blanche Carruth McGehee

Preface

This book considers various spaces and algebras made up of functions, measures, and other objects—situated always on one or another locally compact abelian group, and studied in the light of the Fourier transform. The emphasis is on the objects themselves, and on the structure-in-detail of the spaces and algebras.

A mathematician needs to know only a little about Fourier analysis on the commutative groups, and then may go many ways within the large subject of harmonic analysis—into the beautiful theory of Lie group representations, for example. But this book represents the tendency to linger on the line, and the other abelian groups, and to keep asking questions about the structures thereupon. That tendency, pursued since the early days of analysis, has defined a field of study that can boast of some impressive results, and in which there still remain unanswered questions of compelling interest.

We were influenced early in our careers by the mathematicians Jean-Pierre Kahane, Yitzhak Katznelson, Paul Malliavin, Yves Meyer, Joseph Taylor, and Nicholas Varopoulos. They are among the many who have made the field a productive meeting ground of probabilistic methods, number theory, diophantine approximation, and functional analysis. Since the academic year 1967–1968, when we were visitors in Paris and Orsay, the field has continued to see interesting developments. Let us name a few. Sam Drury and Nicholas Varopoulos solved the union problem for Helson sets, by proving a remarkable theorem (2.1.3) which has surely not seen its last use. Gavin Brown and William Moran and others fleshed out the framework that Joseph Taylor had provided for the study of convolution algebras, and Thomas Körner's construction techniques made child's play of problems once thought intractable.

The book is for those who work in commutative harmonic analysis, for those who wish to do so, and for those who merely want to look into it. In the areas that we have chosen to treat, we have tried to make more accessible than before not only the results for their own sakes, but also the techniques, the points of view, and the sources of intuition by which the subject lives.

We have had repeatedly to choose whether to present material in the abstract setting of an arbitrary locally compact abelian group G, or on, say, the circle group T. As often as not, restricting the discussion to a concrete

setting makes the essential ideas more vivid, and one loses nothing but technical clutter. But sometimes one must concede the greater usefulness and aesthetic appeal of a general treatment. So we have made sometimes the one choice, and sometimes the other. But let us emphasize that the subject is truly the union, not the intersection, of the studies on the various abelian groups.

The order of the chapters does not have the usual significance, even though we did choose it with care. One reviewer suggests that 12 and 11 should appear between 4 and 5. In any event, whenever the material of one chapter depends on some part of another one, the reader is provided with a specific reference. Therefore one who is not discouraged by the Prerequisites, and who is familiar with our Symbols, Conventions, and Terminology, may begin reading at any one of the chapters.

We thank our home departments, at Northwestern and Louisiana State, for their support over the years. We thank also the several other mathematics departments where one or both of us have visited and found pleasant conditions for work: in Paris, Jerusalem, Urbana, Eugene, and Honolulu.

We thank the many colleagues and friends who have given us encouragement and help. In particular, for their extensive and critical attention to drafts of various parts of the book, we thank Aharon Atzmon, John Fournier, Yitzhak Katznelson, Thomas Ramsey, and George Shapiro. Especially do we thank Sadahiro Saeki, who read over half the book with care and made many valuable suggestions.

Evanston, Illinois

Colin C. Graham

Baton Rouge, Louisiana

O. Carruth McGehee

March, 1979

Contents

Chapter 1The Behavior of Transforms11.1. Introduction11.2. The Idempotents in the Measure Algebra31.3. Paul Cohen's Theorem on the Norms of Idempotents61.4. Transforms of Continuous Measures181.5. The Two Sides of a Fourier Transform271.6. Transforms of Rudin-Shapiro Type331.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set482.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits683.1. Introduction683.2. When Synthesis683.3. When Synthesis Fails86	Prerequisities	xiii
The Behavior of Transforms11.1. Introduction11.2. The Idempotents in the Measure Algebra31.3. Paul Cohen's Theorem on the Norms of Idempotents61.4. Transforms of Continuous Measures181.5. The Two Sides of a Fourier Transform271.6. Transforms of Rudin–Shapiro Type331.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier–Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set2.1. Introduction482.2. Definition of the Functions ω_N 553.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	Symbols, Conventions, and Terminology	XV
1.1. Introduction11.2. The Idempotents in the Measure Algebra31.3. Paul Cohen's Theorem on the Norms of Idempotents61.4. Transforms of Continuous Measures181.5. The Two Sides of a Fourier Transform271.6. Transforms of Rudin–Shapiro Type331.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier–Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set482.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.1. Introduction683.2. When Synthesis Fails68	Chapter 1	
1.2. The Idempotents in the Measure Algebra 3 1.3. Paul Cohen's Theorem on the Norms of Idempotents 6 1.4. Transforms of Continuous Measures 18 1.5. The Two Sides of a Fourier Transform 27 1.6. Transforms of Rudin-Shapiro Type 33 1.7. A Separable Banach Space That Has No Basis 37 1.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure 40 Chapter 2 A A Proof That the Union of Two Helson Sets Is a Helson Set 48 2.1. Introduction 48 2.2. Definition of the Functions ω_N 55 2.3. Transfering the Problem from One Group to Another 56 2.4. Proof of Theorem 2.1.3 60 2.5. Remarks and Credits 64 Chapter 3 68 3.1. Introduction 68 3.2. When Synthesis Succeeds 73 3.3. When Synthesis Fails 66	The Behavior of Transforms	1
1.2. The Idempotents in the Measure Algebra 3 1.3. Paul Cohen's Theorem on the Norms of Idempotents 6 1.4. Transforms of Continuous Measures 18 1.5. The Two Sides of a Fourier Transform 27 1.6. Transforms of Rudin-Shapiro Type 33 1.7. A Separable Banach Space That Has No Basis 37 1.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure 40 Chapter 2 A A Proof That the Union of Two Helson Sets Is a Helson Set 48 2.1. Introduction 48 2.2. Definition of the Functions ω_N 55 2.3. Transfering the Problem from One Group to Another 56 2.4. Proof of Theorem 2.1.3 60 2.5. Remarks and Credits 64 Chapter 3 68 3.1. Introduction 68 3.2. When Synthesis Succeeds 73 3.3. When Synthesis Fails 66	1.1. Introduction	1
1.3. Paul Cohen's Theorem on the Norms of Idempotents 6 1.4. Transforms of Continuous Measures 18 1.5. The Two Sides of a Fourier Transform 27 1.6. Transforms of Rudin–Shapiro Type 33 1.7. A Separable Banach Space That Has No Basis 37 1.8. Restrictions of Fourier–Stieltjes Transforms to Sets of Positive Haar Measure 40 Chapter 2 A A Proof That the Union of Two Helson Sets Is a Helson Set 48 2.1. Introduction 48 2.2. Definition of the Functions ω_N 55 2.3. Transfering the Problem from One Group to Another 56 2.4. Proof of Theorem 2.1.3 60 2.5. Remarks and Credits 64 Chapter 3 68 3.1. Introduction 68 3.2. When Synthesis Succeeds 73 3.3. When Synthesis Fails 66		
1.4. Transforms of Continuous Measures181.5. The Two Sides of a Fourier Transform271.6. Transforms of Rudin-Shapiro Type331.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set2.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86		
1.6. Transforms of Rudin-Shapiro Type331.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set2.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86		
1.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set482.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	1.5. The Two Sides of a Fourier Transform	27
1.7. A Separable Banach Space That Has No Basis371.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set482.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.3. When Synthesis Succeeds733.3. When Synthesis Fails86		33
1.8. Restrictions of Fourier-Stieltjes Transforms to Sets of Positive Haar Measure40Chapter 2A Proof That the Union of Two Helson Sets Is a Helson Set482.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86		37
Chapter 2 A Proof That the Union of Two Helson Sets Is a Helson Set 48 2.1. Introduction 48 2.2. Definition of the Functions ω_N 55 2.3. Transfering the Problem from One Group to Another 56 2.4. Proof of Theorem 2.1.3 2.5. Remarks and Credits 64 Chapter 3 Harmonic Synthesis 68 3.1. Introduction 68 3.2. When Synthesis Succeeds 73 3.3. When Synthesis Fails		
A Proof That the Union of Two Helson Sets Is a Helson Set482.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	Haar Measure	40
2.1. Introduction482.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	Chapter 2	
2.2. Definition of the Functions ω_N 552.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3Harmonic Synthesis3.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	A Proof That the Union of Two Helson Sets Is a Helson Set	48
2.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 3683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	2.1. Introduction	48
2.3. Transfering the Problem from One Group to Another562.4. Proof of Theorem 2.1.3602.5. Remarks and Credits64Chapter 368Harmonic Synthesis683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	2.2. Definition of the Functions ω_N	55
2.5. Remarks and Credits64Chapter 3Harmonic Synthesis683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86		56
Chapter 3Harmonic Synthesis3.1. Introduction3.2. When Synthesis Succeeds3.3. When Synthesis Fails	2.4. Proof of Theorem 2.1.3	60
Harmonic Synthesis683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	2.5. Remarks and Credits	64
Harmonic Synthesis683.1. Introduction683.2. When Synthesis Succeeds733.3. When Synthesis Fails86	Chapter 3	
3.2. When Synthesis Succeeds733.3. When Synthesis Fails86	Harmonic Synthesis	68
3.2. When Synthesis Succeeds733.3. When Synthesis Fails86	3.1. Introduction	68
3.3. When Synthesis Fails 86		
		ix

222

Chapter 4

Sets of Uniqueness, Sets of Multiplicity	
4.1. Introduction	91
4.2. The Support of a Pseudomeasure	93
4.3. The Weak * Closure of $I(E)$	97
4.4. An M_1 -Set That Is Not an M_o -Set	104
4.5. Results about Helson Sets and Kronecker Sets	110
4.6. <i>M</i> -Sets Whose Helson Constant Is One	114
4.7. Independent M_{o} -Sets	118

Chapter 5

A Brief Introduction to Convolution Measure Algebras	
5.1. Elementary Properties	122
5.2. L-Subalgebras and L-Ideals	128
5.3. Critical Point Theory and a Proof of the Idempotent Theorem	133
5.4. A Guide for Further Study	137

Chapter 6

Independent Power Measures	
6.1. Introduction and Initial Results	138
6.2. Measures on Algebraically Scattered Sets	145
6.3. Measures on Dissociate Sets	159
6.4. Infinite Product Measures	169
6.5. General Results on Infinite Convolutions	174
6.6. Bernoulli Convolutions	178
6.7. Coin Tossing	182
6.8. $M_o(G)$ Contains Tame i.p. Measures	190

Chapter 7196Riesz Products1967.1. Introduction and Initial Results1967.2. Orthogonality Relations for Riesz Products2037.3. Most Riesz Products Are Tame2097.4. A Singular Measure in $M_o(G)$ That Is Equivalent to Its Square2157.5. A Multiplier Theorem and the Support of Singular
Fourier-Stieltjes Transforms217

	Fourier–Stieltjes Transforms
7.6.	Small Subsets of Z That Are Dense in bZ

7.7. Non-trivial Idempotents in B(E) for $E \subset Z$ 226

Contents

Chapter 8
The Šilov Boundary, Symmetric Ideals, and Gleason Parts of ΔM(G)
8.1. Introduction
8.2. The Šilov Boundary of M(G)

8.3. Some Translation Theorems2318.4. Non-symmetric Maximal Ideals in M(G)2398.5. Point Derivations and Strong Boundary Points for M(G)2428.6. Gleason Parts for Convolution Measure Algebras246

Chapter 9

The Wiener-Lévy Theorem and Some of Its Converses	
9.1. Introduction	251
9.2. Proof of the Wiener-Lévy Theorem and Marcinkiewicz's Theorem	252
9.3. Converses to the Wiener–Lévy Theorem	255
9.4. Functions Operating in $B(\Gamma)$	261
9.5. Functions Operating in $B_o(\Gamma)$	265
9.6. Functions Operating on Norm One Positive-Definite Functions	268

Chapter 10

The Multiplier Algebras $M_p(\Gamma)$, and the Theorem of Zafran	
10.1. Introduction 10.2. The Basis Theory of the Alcohros $M(\Gamma)$	281 283
10.2. The Basic Theory of the Algebras $M_p(\Gamma)$	203
10.3. Zafran's Theorem about the Algebra $M_{po}(Z)$	294

Chapter 11

Tensor Algebras and Harmonic Analysis	
11.1. Introduction and Initial Results	308
11.2. Transfer Methods: Harmonic Synthesis and Non-finitely	
Generated Ideals in $L^1(G)$	313
11.3. Sets of Analyticity and Tensor Algebras	324
11.4. Infinite Tensor Products and the Saucer Principle	331
11.5. Continuity Conditions for Membership in $V(T,T)$	334
11.6. Sidon Constants of Finite Sets for Tensor Algebras and Group	
Algebras	336
11.7. Automorphisms of Tensor Algebras	348
11.8. V-Sidon and V-Interpolation Sets	353
11.9. Tilde Tensor Algebras	357

228

228

228

Chapter 12	
Tilde Algebras	362
12.1. Introduction	362
12.2. Subsets of Discrete Groups	369
12.3. The Connection with Synthesis	385
12.4. Sigtuna Sets	391
12.5. An Example in which $A(E)$ Is a Dense Proper Subspace of $\tilde{A}(E)$	394
Chapter 13	
Unsolved Problems	402
13.1. Dichotomy	402
13.2. Finite Sets	405
13.3. Isomorphisms between Quotients of $A(G)$	405
13.4. The Rearrangements Question of N. N. Lusin	408
13.5. Continuity of Linear Operators on $L^{1}(R)$	408
13.6. p-Helson Sets	408
13.7. Questions of Atzmon on Translation Invariant Subspaces of	
LP and C_{a}	408
13.8. Questions on Subsets E of the Integer Group	409
13.9. Questions on Sets of Synthesis	409
13.10. Characterizing Sidon Sets in Certain Groups	410
13.11. Subalgebras of L^1	410
13.12. $\Lambda(p)$ -Sets and Multipliers	410
13.13. Identifying the Maximal Ideal Spaces of Certain	
L-Subalgebras of $M(G)$	411
13.14. A Question of Katznelson on Measures with Real Spectra	411
13.15. The Support Group of a Tame Measure	411
13.16. The Šilov Boundary of $M(G)$	411
13.17. Taylor's Theorems	412
13.18. Two Factorization Questions	412
13.19. Questions about Tensor Algebras	412
13.20. Other Question Lists	412
Appendix	413
A.1. Riesz Products in Brief	413
A.2. Norbert Wiener's Theorem on the Average Value of $ \hat{\mu} ^2$	415
A.3. A Proof That Singletons Obey Synthesis, and How	416
A.4. S. Bernstein's Inequality	418
A.5. Triangles and Trapezoids	418

A.6. Convolution and Relative Absolute Continuity

A.7. An Extension Theorem for Fourier-Stieltjes Transforms

Т

Index

References

Prerequisites

The areas in which it is most important for the reader to have both knowledge and facility are as follows.

- 1. Basic functional analysis, as in Dunford and Schwartz [1, Chapter II and Sections V.1-V.6] or Rudin [3].
- 2. The theory of measure and integration, as in Royden [1, Parts 1 and 3].
- 3. Commutative Banach algebra theory, as in Rudin [3, Chapter 11].
- 4. Fourier analysis on the line and the circle, as in Katznelson [1, Chapters I, IV, and VI; also Sections II.1 and V.1].
- 5. Fourier analysis on locally compact abelian groups, as in Rudin [1, Chapters 1 and 2]. In particular, we shall use the structure theorem: every locally compact abelian group G has an open subgroup of the form $R^n \times H$, where $n \ge 0$ and H is compact. For another treatment of that theorem, see Hewitt and Ross [1, Section 24].

In addition, the reader will find it helpful to have sampled the theory of exceptional subsets ("thin sets") of groups, as for example in Lindahl and Poulsen [1, Chapter 1] and Kahane [1, Chapters III and IV].

Some of the elementary material is treated in the Appendix. For example, the results of Section 2.6 in Rudin [1] are given a different treatment in A.5.

Besides the works that we have recommended here, there are of course other excellent sources from which to acquire the same background knowledge.

There are isolated places in the book where we use other, more advanced and specialized material, and at such points we give specific references.

Symbols, Conventions, and Terminology

Before beginning any of the chapters, the reader should study this list of symbols and terms that are used most frequently. Each item is attended by a brief definition, and perhaps also a remark or two about relevant conventions and basic facts. Some of the definitions make use of others on the list. The order is alphabetical, with the Greek entries grouped all together after the Latin ones; except that we single out several items to explain at the outset.

The symbol G stands for an arbitrary locally compact abelian group, except when some other meaning is specified. The same is true for the symbol Γ . When G and Γ appear in the same context, each denotes the dual group of the other; and then for $x \in G$ and $\gamma \in \Gamma$, the value of γ at x is denoted by $\langle x, \gamma \rangle$. Thus if Γ is considered as an additive group, $\langle x, \gamma_1 + \gamma_2 \rangle =$ $\langle x, \gamma_1 \rangle \cdot \langle x, \gamma_2 \rangle$. If f is an element of a Banach space and S an element of the dual space, then too, $\langle f, S \rangle$ means the value of S at f.

The symbol E nearly always stands for a closed subset of Γ . Whenever $X = X(\Gamma)$ is a Banach algebra of functions on Γ (such as A, AP, B, B₀, or M_p), the symbol X(E) (or $X(E, \Gamma)$) stands for the Banach algebra of restrictions to E of functions in X with norm

$$||f||_{X(E)} = \inf\{||g||_X : g = f \text{ on } E\}.$$

Equivalently, X(E) may be defined as the quotient algebra X/I, where I is the ideal $\{f \in X : f^{-1}(0) \supseteq E\}$. But when X is a space of distributions on G (such as M, M_1, M_c, M_d, PF , or PM), then the symbol X(E) stands for the subspace of X consisting of the elements with support contained in E.

- $A(\Gamma) \qquad -\text{the Fourier representation of the convolution algebra} L^1(G); \text{ that is, the Banach algebra of Fourier transforms } \hat{f} \text{ of elements } f \text{ of } L^1(G). \text{ The operators are the usual pointwise ones, and the norm, denoted by } \|\hat{f}\|_{A(\Gamma)} \text{ or } \|\hat{f}\|_A, \text{ is defined to equal the } L^1(G)\text{-norm of } f. \text{ Note the natural norm-decreasing inclusion: } A(\Gamma) \subseteq C_o(\Gamma).$
- $AP(\Gamma)$ —the algebra of almost periodic functions on Γ , with pointwise operations and the supremum norm. It is realizable as $C(b\Gamma)$.

<i>Β</i> (Γ)	—the Fourier representation of the convolution algebra $M(G)$; that is, the Banach algebra of Fourier transforms $\hat{\mu}$ of measures $\mu \in M(G)$. The elements of $B(\Gamma)$ are also called the Fourier-Stieltjes transforms on Γ . The operations are the usual pointwise ones, and the norm, denoted by $\ \hat{\mu}\ _{B(\Gamma)}$ or $\ \hat{\mu}\ _{B}$, is the total variation of μ . Note the natural isometric and isomorphic inclusions: $L^{1}(G) \subseteq M(G), A(\Gamma) \subseteq B(\Gamma)$.
$B_o(\Gamma)$	$= B(\Gamma) \cap C_o(\Gamma).$
BV	-the space of functions of bounded variation
bΓ	—the Bohr compactification of Γ ; equivalently, the dual group of G_d .
\mathbb{C}	-the complex number system.
<i>C</i> (<i>X</i>)	—where X is a topological space: the Banach algebra of bounded continuous complex-valued functions on X , with the usual pointwise operations and the supremum norm.
$C_{c}(X)$	$- \{f \in C(X): \text{ the support of } f \text{ is compact} \}.$
$C_o(X)$	—the subalgebra of $C(X)$ consisting of the functions that vanish at infinity.
countable	—in one-to-one correspondence with some subset of the positive integers.
D	—the Cantor group; that is, the product group $\prod_{j=1}^{\infty} G_j$, where each G_j is the two-element group.
#E or Card E	-the cardinality of the set E.
E-polynomial, E-function, E-measure	Let E be a subset of Γ . An E-polynomial, E-function, or E-measure is a trigonometric polynomial, a function, or a measure, respectively, whose Fourier transform vanishes on the complement of E.
Ĵ	-(1) the Fourier transform of f , where f is a function, bounded Borel measure, or distribution defined on (say) G. Thus if $f \in L^1(G)$,
	$\hat{c}(x) \int c(x) dx dx dx$

 $\hat{f}(\gamma) = \int_G \langle x, -\gamma \rangle dm_G(x) \quad \text{for } \gamma \in \Gamma.$

More generally, for $\mu \in M(G)$,

$$\hat{\mu}(\gamma) = \int_G \langle x, -\gamma \rangle d\mu(x) \quad \text{for } \gamma \in \Gamma.$$

The Fourier transform provides isometric isomorphisms $L^{1}(G) \triangleq A(\Gamma), M(G) \triangleq B(\Gamma),$ since $(\mu_{1} * \mu_{2})^{\wedge} = \hat{\mu}_{1}\hat{\mu}_{2}.$

	-(2) the Gelfand transform of an element f of a
F_{σ}	Banach algebra. —the class of all sets that are countable unions of closed sets.
G_{δ}	-the class of all sets that are countable intersections of open sets.
\widehat{G}	-the dual group of G.
G _d	-G, but with its topology replaced by the discrete topology.
G^n	—the product group $\prod_{j=1}^{n} G_j$, where each G_j is G.
Gp H	-where $H \subseteq G$: the group generated algebraically by H .
Helson set	See $\alpha(E)$ below.
Hermitian	$-\mu \in M(G)$ is Hermitian if $\tilde{\mu} = \mu$.
h(1)	-where I is an ideal in a Banach algebra of functions on a set X: the hull of I, $h(I) = \{x \in X : f(0) = 0 \text{ for all } f \in I\}.$
I(E), $I_o(E), J(E)$	When $E \subseteq \Gamma$ and $A = A(\Gamma)$ is the algebra under discussion, these symbols denote respectively the largest ideal whose hull is E :
	$I(E) = \{f \in A \colon f^{-1}(0) \supseteq E\},\$
	$I(E) = \{ f \in A : f^{-1}(0) \supseteq E \},\$ the smallest closed ideal whose hull is <i>E</i> , and the smallest ideal whose hull is <i>E</i> : $J(E) = \{ f \in A : f^{-1}(0) \text{ is a} $ neighborhood of <i>E</i> }. Note that $I_o(E)$ is the closure in <i>A</i> of $J(E)$.
independent	the smallest closed ideal whose hull is E , and the smallest ideal whose hull is E : $J(E) = \{f \in A : f^{-1}(0) \text{ is a neighborhood of } E\}$. Note that $I_o(E)$ is the closure in
independent	the smallest closed ideal whose hull is E , and the smallest ideal whose hull is $E: J(E) = \{f \in A: f^{-1}(0) \text{ is a} neighborhood of } E\}$. Note that $I_o(E)$ is the closure in A of $J(E)$. A set $E \subseteq G$ is independent if whenever $x_1, \ldots, x_n \in E$
independent	the smallest closed ideal whose hull is E , and the smallest ideal whose hull is $E: J(E) = \{f \in A: f^{-1}(0) \text{ is a} neighborhood of } E\}$. Note that $I_o(E)$ is the closure in A of $J(E)$. A set $E \subseteq G$ is independent if whenever $x_1, \ldots, x_n \in E$ and $u_1, \ldots, u_n \in Z$, and $\sum_{j=1}^n u_j x_j = 0$, then
independent	the smallest closed ideal whose hull is E , and the smallest ideal whose hull is $E: J(E) = \{f \in A: f^{-1}(0) \text{ is a} neighborhood of } E\}$. Note that $I_o(E)$ is the closure in A of $J(E)$. A set $E \subseteq G$ is independent if whenever $x_1, \ldots, x_n \in E$ and $u_1, \ldots, u_n \in Z$, and $\sum_{j=1}^n u_j x_j = 0$, then (1) $u_j x_j = 0$ for $1 \le j \le n$.
independent Kronecker set	the smallest closed ideal whose hull is <i>E</i> , and the smallest ideal whose hull is <i>E</i> : $J(E) = \{f \in A : f^{-1}(0) \text{ is a} neighborhood of E\}$. Note that $I_o(E)$ is the closure in <i>A</i> of $J(E)$. A set $E \subseteq G$ is independent if whenever $x_1, \ldots, x_n \in E$ and $u_1, \ldots, u_n \in Z$, and $\sum_{j=1}^n u_j x_j = 0$, then (1) $u_j x_j = 0$ for $1 \le j \le n$. But when $G = T$, we replace (1) in the definition by

 $\gamma \in \Gamma$ such that $f(x) = \langle x, \gamma \rangle$ for all $x \in E$. A K_p -set is evidently a Helson set.

$$f * g(x) = \int_G f(x - y)g(y)dm_G(y).$$

The norm, under which $L^{1}(G)$ is a Banach algebra, is given by:

$$||f||_1 = ||f||_{L^1(G)} = \int_G |f(x)| dm_G(x).$$

- $\begin{array}{ll} L^p(G) & -\text{the Banach space of equivalence classes of measurable} \\ (1 \le p < \infty) & \text{functions } f \text{ on } G \text{ such that } |f|^p \text{ is integrable, with} \\ & \text{norm } \|f\|_p = \|f\|_{L^p(G)} = \int_G |f(x)|^p \, dm_G(x). \end{array}$
- $L^{\infty}(G)$ —the Banach space of equivalence classes of essentially bounded measurable functions f on G, with norm

 $-\int f \in L^p(G)$: $\hat{f}(u) = 0$ for $u \notin E$

$$||f||_{\infty} = ||f||_{L^{\infty}(G)} = \inf\{c : |f(x)| \le c \quad \text{l.a.e.-}m_G\}.$$

$$m_{G} \qquad \qquad -a \text{ Haar measure on } G, \text{ normalized so that } m_{G}(\{0\}) = 1$$

if G is discrete and infinite; or so that $m_{G}(\{0\}) = 1$
if G is compact. We often write dx for $dm_{G}(x)$, dy for
 $dm_{\Gamma}(y)$, and so forth. As for the real line, $dm_{R}(x)$ is
alternatively Lebesgue measure dx , or $dx/2\pi$; thus for
 $f \in L^{1}(R), \ \hat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-iyx} dx$, and if $\hat{f} \in L^{1}(R),$
 $f(x) = (1/2\pi) \int_{-\infty}^{\infty} \hat{f}(y)e^{iyx} dy.$

$$\|\mu\|_M = \|\mu\|_{M(G)} = \int_G |d\mu(x)|.$$

M(G) is the Banach space dual of $C_o(G)$, with the pairing given by:

$$\langle f, \mu \rangle = \int f(x) \overline{d\mu(x)}.$$

IP(G)

M(E)	-where $E \subseteq G$: the subspace of $M(G)$ consisting of the measures with support contained in E.
$M_1(E)$	= { $\mu \in M(E)$: supp μ is a finite set}.
$M_{c}(E)$	= { $\mu \in M(E)$: μ is continuous, that is, μ ({x}) = 0 for each $x \in E$ }.
$M_d(E)$	= { $\mu \in M(E)$: μ is discrete} $\simeq l^{1}(E)$.
$M_o(E)$	$= \{ \mu \in M(E) \colon \hat{\mu} \in C_o(\Gamma) \}.$
M-set	A set E is an M-set if $PF(E) \neq \{0\}$.
M_o -set	A set E is an M_v -set if $PF(E) \cap M(E) \neq \{0\}$.
N(E)	-the annihilator of $I(E)$ in $P\dot{M}(\Gamma)$; equivalently, the Banach space dual of the quotient algebra $A(E) = A(G)/I(E)$.
Parseval relation	-an identity of a certain kind, of which the following are examples. (1) For $f \in A(G)$ and $\mu \in M(G)$, $\int_G f(x)d\mu(x) = \int_{\Gamma} \hat{f}(\gamma)\hat{\mu}(\gamma)d\gamma$. (2) For $f, g \in L^2(G)$, $\int_G f(x)g(x)dx = \int_{\Gamma} \hat{f}(\gamma)\hat{g}(\gamma)d\gamma$.
Pisot number	-an algebraic integer $\theta > 1$ with conjugates $\theta, x_1, \ldots, x_{n-1}$ such that $ x_j < 1$ for each j.
portion	If U is an open interval on the line or circle, and if $U \cap E$ is closed and nonempty, then $U \cap E$ is called a portion of E.
ΡF(Γ)	-the subspace of $PM(\Gamma)$ consisting of those pseudo- measures S such that $\hat{S} \in C_o(G)$. Its elements are called pseudofunctions. Its dual space is $B(\Gamma)$, which of course equals $A(\Gamma)$ when G is discrete.
ΡΜ(Γ)	-the Banach space dual of $A(\Gamma)$. If $S \in PM(\Gamma)$, S is called a pseudomeasure, and there exists $\hat{S} \in L^{\infty}(G)$ such that for every $\hat{f} \in A(\Gamma)$,
	С <u> </u>

$$\langle \hat{f}, S \rangle = \int_{G} f(x) \overline{\hat{S}(x)} dx.$$

Conversely, every element $S \in L^{\infty}(G)$ gives rise to a pseudomeasure, and $||S||_{PM} = ||S||_{PM(\Gamma)} = ||\hat{S}||_{L^{\infty}(\Gamma)}$. Note the natural norm-decreasing inclusion: $A(\Gamma) \subseteq C_o(\Gamma)$ and its adjoint: $M(\Gamma) \subseteq PM(\Gamma)$. As usual with a Banach space and its pre-dual, $PM(\Gamma)$ is a module over $A(\Gamma)$; for $S \in PM$ and $f \in A$, we define $fS \in PM$ by: $\langle g, fS \rangle = \langle gf, S \rangle$ for $g \in A$. Note that $||fS||_{PM} \leq ||f||_A ||S||_{PM}$; and that $(fS)^{\wedge} = \hat{f} * \hat{S}$.

- R the real number system.
- **Rⁿ** —*n*-dimensional Euclidean space.

Rad I	-the radical of an ideal <i>I</i> in a Banach algebra <i>B</i> ; that is, the intersection of the maximal modular ideals of <i>B</i> that contain <i>I</i> . An example when $B = M(G)$: Rad $L^{1}(G)$ $= \{\mu \in M(G): \hat{\mu}(\psi) = 0 \text{ for all } \psi \in \Delta \setminus \Gamma\}.$
Sidon set	See $\alpha(E)$ below.
supp S T	—the support of the distribution S. —the circle group, realized additively as $R \mod 2\pi$, or multiplicatively as $\{z \in C : z = 1\}$.
T_p	—the subgroup $\{z \in T: z^p = 1\}$ (where p is a positive integer).
weak* topology	—the topology $\sigma(X, X^*)$, the weakest topology on the dual space X^* of a Banach space X with respect to which the mapping $x^* \to \langle x, x^* \rangle$ is continuous for every $x \in X$.
Z	-the integer group.
Z_p	$-Z \mod p$ (where p is a positive integer).
α(Ε)	—the Helson constant of a closed set $E \subseteq G$, called also the Sidon constant when G is discrete. The set E is a <i>Helson set</i> (called a Sidon set when G is discrete) if it is a set of interpolation for the algebra $A(G)$ —that is, if $A(E) = C_o(E)$. For arbitrary E, the inclusion map: $A(E) \subseteq C_o(E)$ is one-to-one and norm-decreasing, and $A(E)$ is dense in $C_o(E)$, so that E is a Helson set if and only if the quantity
	$\alpha(E) = \sup \left\{ \frac{\ f\ _{A(E)}}{\ f\ _{C_o(E)}} : f \in A(E), f \neq 0 \right\}$
	is finite. Evidently $1 \le \alpha(E) \le \infty$, and by duality
	$\alpha(E) = \sup \left\{ \frac{\ \mu\ _M}{\ \mu\ _{PM}} : \mu \in M(E), \mu \neq 0 \right\}.$
	When G is discrete, E is a Helson set (a Sidon set) if and only if $B(E) = l^{\infty}(E)$.
δ_x or $\delta(x)$	-the measure μ such that $\mu(E) = \begin{cases} 1 \text{ if } x \in E, \\ 0 \text{ if } x \in E. \end{cases}$
ΔB	—the maximal ideal space of the commutative Banach algebra B .
∂B	—the Šilov boundary of ΔB , where B is a commutative Banach algebra; that is, the smallest closed set $S \subseteq \Delta B$ such that for every $f \in B$, $\sup_{h \in \Delta B} \hat{f}(h) $ is attained at some $h \in S$.

μ	-the conjugate of the measure $\mu \in M(G)$, defined by the condition that $\tilde{\mu}(E) = \mu(-E)$ for every Borel set $E \subseteq G$. Note that $\hat{\mu} = \bar{\mu}$ on Γ .
$\mu _E$	—the restriction to the set E of the measure μ ; that is, the measure v such that $v(F) = \mu(E \cap F)$.
μ_{c}	—the continuous part of the measure μ .
μ_d	—the discrete (or atomic) part of μ .
μ_s	—the singular part of the measure μ .
$\mu \perp v$	—means that μ and ν are mutually singular.
$\mu \ll v$	—means that μ is absolutely continuous with respect to
	ν.
$\mu \approx v$	—means that $\mu \ll v$ and $v \ll \mu$.
ΣB	-the set of symmetric maximal ideals in the commuta- tive Banach algebra <i>B</i> , that is, <i>B</i> has an involution $f \mapsto \tilde{f}$ and $\psi \in \Sigma B$ if and only if $\tilde{f}(\psi) = \hat{f}(\psi)^{-}$ for all $f \in B$. In the case of $M(G)$, it is clear that $\Gamma \subseteq \Sigma M(G)$.
Xe	—the indicator function (sometimes called the characteristic function) of the set $E: \chi_E(x) = 1$ if $x \in E$, 0 otherwise.