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Preface 

This book considers various spaces and algebras made up of functions, 
measures, and other objects-situated always on one or another locally 
compact abelian group, and studied in the light of the Fourier transform. 
The emphasis is on the objects themselves, and on the structure-in-detail of 
the spaces and algebras. 

A mathematician needs to know only a little about Fourier analysis on the 
commutative groups, and then may go many ways within the large subject 
of harmonic analysis-into the beautiful theory of Lie group representations, 
for example. But this book represents the tendency to linger on the line, and 
the other abelian groups, and to keep asking questions about the structures 
thereupon. That tendency, pursued since the early days of analysis, has defined 
a field of study that can boast of some impressive results, and in which there 
still remain unanswered questions of compelling interest. 

We were influenced early in our careers by the mathematicians Jean-Pierre 
Kahane, Yitzhak Katznelson, Paul Malliavin, Yves Meyer, Joseph Taylor, 
and Nicholas Varopoulos. They are among the many who have made the 
field a productive meeting ground of probabilistic methods, number theory, 
diophantine approximation, and functional analysis. Since the academic 
year 1967-1968, when we were visitors in Paris and Orsay, the field has 
continued to see interesting developments. Let us name a few. Sam Drury 
and Nicholas Varopoulos solved the union problem for Helson sets, by 
proving a remarkable theorem (2.1.3) which has surely not seen its last use. 
Gavin Brown and William Moran and others fleshed out the framework that 
Joseph Taylor had provided for the study of convolution algebras, and 
Thomas Korner's construction techniques made child's play of problems 
once thought intractable. 

The book is for those who work in commutative harmonic analysis, for 
those who wish to do so, and for those who merely want to look into it. In the 
areas that we have chosen to treat, we have tried to make more accessible than 
before not only the results for their own sakes, but also the techniques, the 
points of view, and the sources of intuition by which the subject lives. 

We have had repeatedly to choose whether to present material in the 
abstract setting of an arbitrary locally compact abelian group G, or on, say, 
the circle group T. As often as not, restricting the discussion to a concrete 
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viii Preface 

setting makes the essential ideas more vivid, and one loses nothing but 
technical clutter. But sometimes one must concede the greater usefulness and 
aesthetic appeal of a general treatment. So we have made sometimes the one 
choice, and sometimes the other. But let us emphasize that the subject is 
truly the union, not the intersection, of the studies on the various abelian 
groups. 

The order of the chapters does not have the usual significance, even though 
we did choose it with care. One reviewer suggests that 12 and 11 should appear 
between 4 and 5. In any event, whenever the material of one chapter depends 
on some part of another one, the reader is provided with a specific reference. 
Therefore one who is not discouraged by the Prerequisites, and who is 
familiar with our Symbols, Conventions, and Terminology, may begin 
reading at anyone of the chapters. 

We thank our home departments, at Northwestern and Louisiana State, 
for their support over the years. We thank also the several other mathematics 
departments where one or both of us have visited and found pleasant 
conditions for work: in Paris, Jerusalem, Urbana, Eugene, and Honolulu. 

We thank the many colleagues and friends who have given us encourage­
ment and help. In particular, for their extensive and critical attention to 
drafts of various parts of the book, we thank Aharon Atzmon, John Fournier, 
Yitzhak Katznelson, Thomas Ramsey, and George Shapiro. Especially do 
we thank Sadahiro Saeki, who read over half the book with care and made 
many valuable suggestions. 

Evanston, Illinois Colin C. Graham 

Baton Rouge, Louisiana O. Carruth McGehee 

March,1979 
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Prereq uisi tes 

The areas in which it is most important for the reader to have both knowledge 
and facility are as follows. 

1. Basic functional analysis, as in Dunford and Schwartz [1, Chapter II 
and Sections V.1-V.6] or Rudin [3]. 

2. The theory of measure and integration, as in Royden [1, Parts 1 and 3]. 
3. Commutative Banach algebra theory, as in Rudin [3, Chapter 11]. 
4. Fourier analysis on the line and the circle, as in Katznelson [1, 

Chapters I, IV, and VI; also Sections III and V.1]. 
5. Fourier analysis on locally compact abelian groups, as in Rudin 

[1, Chapters 1 and 2]. In particular, we shall use the structure theorem: 
every locally compact abelian group G has an open subgroup ofthe form 
Rn x H, where n ~ 0 and H is compact. For another treatment of 
that theorem, see Hewitt and Ross [1, Section 24]. 

In addition, the reader will find it helpful to have sampled the theory of 
exceptional subsets ("thin sets") of groups, as for example in Lindahl and 
Poulsen [1, Chapter 1] and Kahane [1, Chapters III and IV]. 

Some of the elementary material is treated in the Appendix. For example, 
the results of Section 2.6 in Rudin [1] are given a different treatment in A.5. 

Besides the works that we have recommended here, there are of course 
other excellent sources from which to acquire the same background 
knowledge. 

There are isolated places in the book where we use other, more advanced 
and specialized material, and at such points we give specific references. 
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Symbols, Conventions, and Terminology 

Before beginning any of the chapters, the reader should study this list of 
symbols and terms that are used most frequently. Each item is attended by a 
brief definition, and perhaps also a remark or two about relevant conventions 
and basic facts. Some of the definitions make use of others on the list. The 
order is alphabetical, with the Greek entries grouped all together after the 
Latin ones; except that we single out several items to explain at the outset. 

The symbol G stands for an arbitrary locally compact abelian group, 
except when some other meaning is specified. The same is true for the symbol 
r. When G and r appear in the same context, each denotes the dual group 
of the other; and then for x E G and Y E r, the value of Y at x is denoted by 
(x, y). Thus if r is considered as an additive group, (x, YI + Y2) = 

(x, YI)· (x, Y2). Iff is an element ofa Banach space and S an element of the 
dual space, then too, (f, S) means the value of S at f. 

The symbol E nearly always stands for a closed subset of r. Whenever 
X = X(r) is a Banach algebra of functions on r (such as A, AP, B, Bo, or 
Mp), the symbol X(E) (or X(E, r» stands for the Banach algebra of re­
strictions to E of functions in X with norm 

IlfIIX(E) = inf{lIgllx: 9 = f on E}. 

Equivalently, X(E) may be defined as the quotient algebra X/I, where I is 
the ideal {f EX: f -1(0) 2 E}. But when X is a space of distributions on 
G (such as M, M I, Me> M d , PF, or PM), then the symbol X(E) stands for 
the subspace of X consisting of the elements with support contained in E. 

AP(r) 

-the Fourier representation ofthe convolution algebra 
L I(G); that is, the Banach algebra of Fourier trans­
forms I of elements f of L I(G). The operators are 
the usual pointwise ones, and the norm, denoted by 
II I IIA(r) or II/IIA' is defined to equal the L1(G)-norm of 
f. Note the natural norm-decreasing inclusion: A(r) s; 
Co(r). 

-the algebra of almost periodic functions on r, with 
pointwise operations and the supremum norm. It is 
realizable as C(br). 

xv 



xvi 

c 
C(X) 

countable 

D 

#E or Card E 

E-polynomial, 
E-function, 
E-measure 

J 

Symbols, Conventions, and Terminology 

-the Fourier representation of the convolution algebra 
M(G); that is, the Banach algebra of Fourier transforms 
fi of measures J1 E M(G). The elements of B(r) are also 
called the Fourier-Stieltjes transforms on r. The 
operations are the usual pointwise ones, and the norm, 
denoted by IlfillB(n or IlfilIB' is the total variation of J1. 
Note the natural isometric and isomorphic inclusions: 
U(G) s; M(G), A(r) s; B(r). 

= B(r) n Co (r). 

-the space of functions of bounded variation 

-the Bohr compactification ofr; equivalently, the dual 
group of Gd • 

-the complex number system. 

-where X is a topological space: the Banach algebra 
of bounded continuous complex-valued functions on 
X, with the usual pointwise operations and the supre-
mum norm. 

- {f E C(X): the support of f is compact}. 

-the subalgebra of C(X) consisting of the functions 
that vanish at infinity. 

-in one-to-one correspondence with some subset of 
the positive integers. 

-the Cantor group; that is, the product group 
n~ 1 G j' where each G j is the two-element group. 
- the cardinality of the set E. 

Let E be a subset of r. An E-polynomial, E-function, 
or E-measure is a trigonometric polynomial, a function, 
or a measure, respectively, whose Fourier transform 
vanishes on the complement of E. 

-(1) the Fourier transform of f, where f is a function, 
bounded Borel measure, or distribution defined on 
(say) G. Thus if f E U(G), 

J(y) = L <x, -y)dmG(x) for y E r. 

More generally, for J1 E M(G), 

fi(y) = L <x, -y)dJ1(x) for y E r. 

The Fourier transform provides isometric isomorph­
isms U(G) ~ A(r), M(G) ~ B(r), since (J11 * J12)" 
= fi1fi2· 
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F" 

GpH 

Helson set 

Hermitian 

h(I) 

I(E), 
I,,(E), J(E) 

independent 

-(2) the Gelfand transform of an element f of a 
Banach algebra. 

-the class of all sets that are countable unions of 
closed sets. 

-the class of all sets that are countable intersections of 
open sets. 

-the dual group of G. 

-G, but with its topology replaced by the discrete 
topology. 

-the product group n'i= 1 Gj , where each Gj is G. 

-where H £ G: the group generated algebraically by 
H. 
See a.(E) below. 

-11 E M(G) is Hermitian if ji = 11. 

-where I is an ideal in a Banach algebra offunctions on 
a set X: the hull of I, h(I) = {x EX: f(O) = 0 for all 
fEI}. 

When E £ r and A = A(r) is the algebra under discus­
sion, these symbols denote respectively the largest ideal 
whose hull is E: 

I(E) = {f E A: f- 1(0) 2 E}, 

the smallest closed ideal whose hull is E, and the smallest 
ideal whose hull is E: J(E) = {f E A: f - 1(0) is a 
neighborhood of E}. Note that Io(E) is the closure in 
A of J(E). 

A set E £ G is independent if whenever Xl' ..• , Xn E E 
and u1, •.• , Un E Z, and 'Ll= 1 UjXj = 0, then 

(1) for 1 5, j 5, n. 

But when G = T, we replace (1) in the definition by 

(2) for 1 5, j 5, n. 

Kronecker set A set E £ G is a Kronecker set if for every f E C(E) 
and every t; > 0 there exists Y E r such that I f(x) -
<x, y) I < t; for all X E E. A Kronecker set is evidently a 
Helson set. 

Kp-set A set E £ G = ni= 1 Gj , where each Gj is Tp, is a 
Kp-set if for every continuous f: E -+ Tp there exists 



XVlll 

U(G) 

U(G) 
(1 ~ p < (0) 

M(G) 

Symbols, Conventions, and Terminology 

Y E r such that f(x) = (x, y) for all x E E. A Kp-set is 
evidently a Helson set. 

- the convolution algebra of Haar-integrable complex­
valued functions (or rather, equivalence classes thereof) 
on G. Convolution is given by: 

f * g(x) = Lf(X - y)g(y)dmG(y)· 

The norm, under which U(G) is a Banach algebra, 
is given by: 

Ilflll = Ilfllu(G) = Llf(x)ldmG(X). 

- the Banach space of equivalence classes of measurable 
functions f on G such that If IP is integrable, with 
norm Ilfllp = IlfIILP(G) = JG If(xW dmG(x), 

- the Banach space of equivalence classes of essentially 
bounded measurable functions f on G, with norm 

Ilflloo = Ilflluo(G) = inf{c: If(x)1 ~ c l.a.e.-mG}· 

= {jEU(G):j(y) = o fory¢ E}. 

-a Haar measure on G, normalized so that mG( {O}) = 1 
if G is discrete and infinite; or so that mG( G) = 1 
if G is compact. We often write dx for dmG(x), dy for 
dmr(y), and so forth. As for the real line, dmR(x) is 
alternatively Lebesgue measure dx, or dx/2n; thus for 
fEL1(R), j(y) = J~oof(x)e-iYXdx, and if jEL1(R), 
f(x) = (1/2n) J~ 00 j(y)eiYx dy. 

-the convolution algebra of bounded complex-valued 
Borel measures on G. Convolution is given by: 
J1 * v(E) = JG J1(E - x)dv(x) for every Borel set E. The 
norm, under which M (G) is a Banach algebra, is given by 

11J1IIM = 11J1IIM(G) = L IdJ1(x)l· 

M(G) is the Banach space dual ofCo(G), with the pairing 
given by: 

(f, J1) = f f(x)dJ1(x). 
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M(E) 

MiE) 

M,,(E) 

M-set 

Mil-set 

N(E) 

-where E c;; G: the subspace of M(G) consisting of 
the measures with support contained in E. 

= {Jl E M(E): supp Jl is a finite set}. 

= {Jl E M(E): Jl is continuous, that is, Jl( {x}) = 0 for 
each X E E}. 

= {Jl E M(E): Jl is discrete} ~ [l(E). 

= {Jl E M(E): p E Co (r)}. 

A set E is an M-set if PF(E) i= {O}. 

A set E is an M,,-set if PF(E) n M(E) #- {O}. 

-the annihilator of /(E) in PM(r); equivalently, the 
Banach space dual of the quotient algebra A(E) = 
A(G)j/(E). 

Parse val relation -an identity of a certain kind, of which the following 
are examples. (1) For fE A(G) and Jl E M(G), 
fGf(x)dJl(x) = fr/(y)p(y)dy. (2) For f, gEL2(G), 
fG f(x)g(x)dx = fr I(y)g(y)dy. 

Pisot number 

portion 

PF(r) 

PM(r) 

R 

Rn 

-an algebraic integer e > 1 with conjugates e, Xl' ..• , 

x n - 1 such that IXjl < 1 for eachj. 

If U is an open interval on the line or circle, and if 
U n E is closed and nonempty, then U n E is called a 
portion of E. 

-the subspace of PM(r) consisting of those pseudo­
measures S such that SEC" (G). Its elements are called 
pseudofunctions. Its dual space is B(r), which of course 
equals A(r) when G is discrete. 
-the Banach space dual of A(r). If S E PM(r), S is 
called a pseudo measure, and there exists S E L OO( G) 
such that for every 1 E A(r), 

<I, S) = L f(x)S(x)dx. 

Conversely, every element S E L OO(G) gives rise to a 
pseudo measure, and IISilpM = IISIIpM(r) = IISIIv"'(r)' 
Note the natural norm-decreasing inclusion: A(r) C;; 

C,,(r) and its adjoint: M(r) C;; PM(r). As usual with a 
Banach space and its pre-dual, PM(r) is a module 
over A(r); for SEPM and fEA, we define fSEPM 
by: <g,fS) = <gf, S) for g E A. Note that IIfSllpM :s;; 
IIfIIAIISllpM; and that (fS)" = 1 * S. 

-the real number system. 

-n-dimensional Euclidean space. 
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Rad I 

Sidon set 

supp S 
T 

weah topology 

oB 
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-the radical of an ideal I in a Banach algebra B; that 
is, the intersection of the maximal modular ideals of B 
that contain I. An example when B = M(G):RadLl(G) 
= {f.1 E M(G): )2(t/I) = 0 for all t/I E A \r}. 
See rx(E) below. 

-the support of the distribution S. 
-the circle group, realized additively as R mod 2n, 
or multiplicatively as {ZE C: Izi = I}. 

-the subgroup {ZE T: zP = I} (where p is a positive 
integer). 

-the topology O"(X, X*), the weakest topology on the 
dual space X* of a Banach space X with respect to 
which the mapping x* -+ <x, x*) is continuous for 
every x E X. 

-the integer group. 

-Z mod p (where p is a positive integer). 

-the Helson constant of a closed set E <:; G, called 
also the Sidon constant when G is discrete. The set E 
is a Belson set (called a Sidon set when G is discrete) 
if it is a set of interpolation for the algebra A(G)-that 
is, if A(E) = C,,(E). For arbitrary E, the inclusion map: 
A(E) <:; C o (E) is one-to-one and norm-decreasing, and 
A(E) is dense in Co(E), so that E is a Helson set if and 
only if the quantity 

(E) - {llfIIA(E) 'f () f } rx - sup II f k(E)' E A E, -# 0 

is finite. Evidently 1 ::;; rx(E) ::;; 00, and by duality 

rx(E) = sUP{III~i~:: f.1 E M(E), f.1 -# o}. 
When G is discrete, E is a Helson set (a Sidon set) if and 
only if B(E) = [OO(E). 

{
I if x E E, 

-the measure f.1 such that f.1(E) = 0 if x E E. 

-the maximal ideal space of the commutative Banach 
algebra B. 

-the Silov boundary of AB, where B is a commutative 
Banach algebra; that is, the smallest closed set S <:; AB 
such that for every fEB, sUPhedB I/(h) I is attained at 
some hES. 



Symbols, Conventions, and Terminology XXI 

'L.B 

-the conjugate ofthe measure J1 E M(G), defined by the 
condition that j1(E) = J1( - E) for every Borel set 
E S G. Note that fi = Jt on r. 
-the restriction to the set E of the measure J1; that is, 
the measure v such that v(F) = J1(E n F). 

-the continuous part of the measure J1. 

- the discrete ( or atomic) part of J1. 

-the singular part of the measure J1. 

-means that J1 and v are mutually singular. 

-means that J1 is absolutely continuous with respect to 
v. 

-means that J1 ~ v and v ~ J1. 

-the set of symmetric maximal ideals in the commuta-
tive Banach algebra B, that is, B has an involution 
ff---> J and t/J E 'L.B if and only if J"(t/J) = ltt/J)- for 
allf E B. In the case of M( G), it is clear that r <;:: 'L.M( G). 

-the indicator function (sometimes called the charac­
teristic function) of the set E: XE(x) = 1 if x E E, 0 
otherwise. 




