

FINITE GROUPS

DANIEL GORENSTEIN

AMS CHELSEA PUBLISHING
American Mathematical Society • Providence, Rhode Island

SECOND EDITION

2000 *Mathematics Subject Classification*. Primary 20-02, 20Dxx.

Library of Congress Cataloging-in-Publication Data

Gorenstein, Daniel.

Finite groups / Daniel Gorenstein.

p. cm.

Includes bibliographical references and index.

1. Finite groups. 1. Title.

QA171.G64 1980
512'.22—dc19

78-13784

Copyright 1968, 1980 by Daniel Gorenstein.

Reprinted 2007, 2012 by the American Mathematical Society
with the kind permission of the Daniel Gorenstein Trust.

Printed in the United States of America.

∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at <http://www.ams.org/>

10 9 8 7 6 5 4 3 2 17 16 15 14 13 12

CONTENTS

Preface

xi

PART I: METHODS

CHAPTER 1. PRELIMINARIES	3
1. Notation and Terminology	4
2. Assumed Results	5
3. Related Elementary Results	9
CHAPTER 2. SOME BASIC TOPICS	15
1. Characteristic Subgroups	15
2. Elementary Properties of Commutators	18
3. Nilpotent Groups	21
4. Solvable Groups	23
5. Semidirect and Central Products	25
6. Automorphisms as Linear Transformations	29
7. Transitive and Doubly Transitive Permutation Groups	33
8. The Two-Dimensional Linear and Projective Groups	39
CHAPTER 3. REPRESENTATIONS OF GROUPS	58
1. Basic Concepts	58
2. Representations of Abelian Groups	64
3. Complete Reducibility	66
4. Clifford's Theorem	70

5. G -Homomorphisms	75
6. Irreducible Representations and Group Algebras	82
7. Representations of Direct and Central Products	99
8. p -Stable Representations	102
CHAPTER 4. CHARACTER THEORY	112
1. Basic Properties	112
2. The Orthogonality Relations	119
3. Some Applications	130
4. Induced Characters and Trivial Intersection Sets	134
5. Frobenius Groups	140
6. Coherence	148
7. Brauer's Characterization of Characters	160
CHAPTER 5. GROUPS OF PRIME POWER ORDER	172
1. The Frattini Subgroup	173
2. p' -Automorphisms of Abelian p -Groups	175
3. p' -Automorphisms of p -Groups	178
4. p -groups of Small Depth	188
5. Extra-special p -Groups	203
6. The Associated Lie Ring	208
CHAPTER 6. SOLVABLE AND π-SOLVABLE GROUPS	217
1. The Fitting and Frattini Subgroups	217
2. The Schur-Zassenhaus Theorem	220
3. π -Separable and π -Solvable groups	226
4. Solvable Groups	231
5. p -Stability in p -Solvable Groups	234
CHAPTER 7. FUSION, TRANSFER, AND p-FACTOR GROUPS	238
1. Local Fusion	238
2. Alperin's Theorem	240
3. Transfer and the Focal Subgroup	245
4. Theorems of Burnside, Frobenius, and Grün	251
5. Weak Closure and p -Normality	255
6. Elementary Applications	257
7. Groups with Dihedral Sylow 2-Subgroups	260
CHAPTER 8. p-CONSTRAINED AND p-STABLE GROUPS	267
1. p -Constraint and p -Stability	268
2. Glauberman's Theorem	270

3. The Glauberman-Thompson Normal p -Complement Theorem	280
4. Groups with Subgroups of Glauberman Type	281
5. The Thompson Transitivity Theorem	288
6. The Maximal Subgroup Theorem	294

CHAPTER 9. GROUPS OF EVEN ORDER	300
--	-----

1. Elementary Properties of Involutions	301
2. The Feit-Suzuki-Thompson Theorems	306
3. Two Applications	310
4. Group Order Formulas	315

PART II: APPLICATIONS

CHAPTER 10. FIXED-POINT-FREE AUTOMORPHISMS	333
---	-----

1. Elementary Properties	333
2. Fixed-Point-Free Automorphisms of Prime Order	337
3. Frobenius Groups and Groups with Nilpotent Maximal Subgroups	339
4. Fixed-Point-Free Automorphisms of Order 4	340
5. Fixed-Point-Free Four-Groups of Automorphisms	345

CHAPTER 11. THE HALL-HIGMAN THEOREM	358
--	-----

1. Statement and Initial Reductions	359
2. The Extra-Special Case	363

CHAPTER 12. GROUPS WITH GENERALIZED QUATERNION SYLOW 2-SUBGROUPS	373
---	-----

CHAPTER 13. ZASSENHAUS GROUPS	378
--------------------------------------	-----

1. Elementary Properties	379
2. Feit's Theorem	383
3. Classification of Certain Zassenhaus Groups	388

CHAPTER 14. GROUPS IN WHICH CENTRALIZERS ARE NILPOTENT	399
---	-----

1. Basic Properties of CN -Groups	400
2. CN -Groups of Odd Order	405
3. Solvability of CN -Groups of Odd Order	409
4. CN -Groups with Abelian Sylow 2-Subgroups	415

CHAPTER 15. GROUPS WITH SELF-CENTRALIZING SYLOW 2-SUB- GROUPS OF ORDER 4	417
1. Some Properties of $L_2(q)$	418
2. Statement of the Theorem and Initial Reduction	420
3. The Structure of the Centralizer of an Involution	423
4. The Brauer-Suzuki-Wall Theorem	433
 PART III: GENERAL CLASSIFICATION PROBLEMS	
CHAPTER 16. SIMPLE GROUPS OF LOW RANK	443
1. General Methods and Objectives	445
2. Groups of Odd Order	450
3. Groups with Dihedral Sylow 2-Subgroups	462
4. C -Groups	465
5. N -Groups	473
6. Groups with Abelian Sylow 2-Subgroups	480
7. Other Classification Theorems	486
CHAPTER 17. THE KNOWN SIMPLE GROUPS	489
The Families of Known Simple Groups	489
 Bibliography	497
List of Symbols	511
Index	515