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Preface

There are good reasons to believe that
nonstandard analysis, in some ver
sion or other, will be the analysis of
the future.

KURT GODEL

This book is a compilation and development of lecture notes written for
a course on nonstandard analysis that I have now taught several times.
Students taking the course have typically received previous introductions
to standard real analysis and abstract algebra, but few have studied formal
logic. Most of the notes have been used several times in class and revised
in the light of that experience. The earlier chapters could be used as the
basis of a course at the upper undergraduate level, but the work as a
whole, including the later applications, may be more suited to a beginning
graduate course.
This preface describes my motivations and objectives in writing the book.

For the most part, these remarks are addressed to the potential instructor.
Mathematical understanding develops by a mysterious interplay between

intuitive insight and symbolic manipulation. Nonstandard analysis requires
an enhanced sensitivity to the particular symbolic form that is used to ex
press our intuitions, and so the subject poses some unique and challenging
pedagogical issues. The most fundamental of these is how to turn the trans
fer principle into a working tool of mathematical practice. I have found it
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unproductive to try to give a proof of this principle by introducing the
formal Tarskian semantics for first-order languages and working through
the proof of Los's theorem. That has the effect of making the subject seem
more difficult and can create an artifical barrier to understanding. But the
practical use of transfer is more readily explained informally, and typically
involves statements that are no more complicated than the "epsilon-delta"
statements used in standard analysis. My approach then has been to illus
trate transfer by many examples, with demonstrations of why those exam
ples work, leading eventually to a situation in which its formulation as a
general principle appears quite credible.
There is an obvious analogy with standard laws of thought, such as
induction. It would be an unwise teacher who attempted to introduce this
to the novice by deriving the principle of induction as a theorem from
the axioms of set theory. Of course one attempts to describe induction,
and explain how it is applied. Eventually after practice with examples the
student gets used to using it. So too with transfer.
It is sensible to use this approach in many areas of mathematics, for

instance beginning a course on standard analysis with a description of the
real number system JR. as a complete ordered field. The student already
has well-developed intuitions about real numbers, and the axioms serve to
summarise the essential information needed to proceed. It is rare these days
to find a text that begins by explicitly constructing JR. out of the rationals
via Dedekind cuts or Cauchy sequences, before embarking on the theory of
limits, convergence, continuity, etc.
On the other hand, it is not so clear that such a methodology is ade
quate for the introduction of the hyperreal field *JR. itself. In view of the
controversial history of infinitesimals, and the student's lack of familiar
ity with them, there is a plausibility problem about simply introducing *JR.
axiomatically as an ordered field that extends JR., contains infinitesimals,
and has various other properties. I hope that such a descriptive approach
will eventually become the norm, but here I have opted to use the founda
tional, or constructive, method of presenting an ultrapower construction of
the ordered field structure of *JR., and of enlargements of elementary sets,
relations, and functions on JR., leading to a development of the calculus,
analysis, and topology of functions of a single variable. At that point (Part
III) the exposition departs from some others by making an early introduc
tion of the notions of internal, external, and hyperfinite subsets of *JR., and
internal functions from *JR. to *JR., along with the notions of overflow, under
flow, and saturation. It is natural and helpful to develop these important
and radically new ideas in this simpler context, rather than waiting to ap
ply them to the more complex objects produced by constructions based on
superstructures.
As to the use of superstructures themselves, again I have taken a slightly

different tack and followed (in Part IV) a more axiomatic path by positing
the existence of a universe 1!.J containing all the entities (sets, tuples, rela-
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tions, functions, sets of sets of functions, etc., etc.) that might be needed in
pursuing a particular piece of mathematical analysis. 1U is described by set
theoretic closure properties (pairs, unions, powersets, transitive closures).
The role of the superstructure construction then becomes the foundational
one of showing that universes exist. From the point of view of mathemat
ical practice, enlargements of superstructures seem somewhat artificial (a
"gruesome formalism", according to one author), and the approach taken
here is intended to make it clearer as to what exactly is the ontology that
we need in order to apply nonstandard methods. Looking to the future,
if (one would like to say when) nonstandard analysis becomes as widely
recognised as its standard "shadow", so that a descriptive approach with
out any need for ultrapowers is more amenable, then the kind of axiomatic
account developed here on the basis of universes would, I believe, provide
an effective and accessible style of exposition of the subject.

What does nonstandard analysis offer to our understanding of math
ematics? In writing these notes I have tried to convey that the answer
includes the following five features.

(1) New definitions of familiar concepts, often simpler and more intu
itively natural

Examples to be found here include the definitions of convergence,
boundedness, and Cauchy-ness of sequences; continuity, uniform con
tinuity, and differentiability of functions; topological notions of inte
rior, closure, and limit points; and compactness.

(2) New and insightful (often simpler) proofs of familiar theorems

In addition to many theorems of basic analysis about convergence and
limits of sequences and functions, intermediate and extreme values
and fixed points of continuous functions, critical points and inverses
of differentiable functions, the Bolzano-Weierstrass and Heine-Borel
theorems, the topology of sets of reals, etc., we will see nonstandard
proofs of Ramsey's theorem, the Stone representation theorem for
Boolean algebras, and the Hahn-Banach extension theorem on linear
functionals.

(3) New and insightful constructions of familiar objects

For instance, we will obtain integrals as hyperfinite sums; the reals
lR. themselves as a quotient of the hyperrationals *Q; other comple
tions, including the p-adic numbers and standard power series rings
as quotients of nonstandard objects; and Lebesgue measure on lR. by
a nonstandard counting process with infinitesimal weights.
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(4) New objects of mathematical interest

Here we will exhibit new kinds of number (limited, unlimited, in
finitesimal, appreciable); internal and external sets and functions;
shadows; halos; hyperfinite sets; nonstandard hulls; and Loeb mea
sures.

(5) Powerful new properties and principles of reasoning

These include transfer; internal versions of induction, the least num
ber principle and Dedekind completeness; overflow, underflow, and
other principles of permanence; Robinson's sequential lemma; satu
ration; internal set definition; concurrence; enlargement; hyperfinite
approximation; and comprehensiveness.

In short, nonstandard analysis provides us with an enlarged view of the
mathematical landscape. It represents yet another stage in the emergence of
new number systems, which is a significant theme in mathematical history.
Its rich conceptual framework will be built on to reveal new systems and
new understandings, so its development will itself influence the course of
that history.
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