

OT 54 Operator Theory: Advances and Applications Vol. 54

Editor:

I. Gohberg Tel Aviv University Ramat Aviv, Israel

Editorial Office: School of Mathematical Sciences Tel Aviv University Ramat Aviv, Israel

Editorial Board:

A. Atzmon (Tel Aviv)
J. A. Ball (Blacksburg)
L. de Branges (West Lafayette)
K. Clancey (Athens, USA)
L. A. Coburn (Buffalo)
R. G. Douglas (Stony Brook)
H. Dym (Rehovot)
A. Dynin (Columbus)
P. A. Fillmore (Halifax)
C. Foias (Bloomington)
P. A. Fuhrmann (Beer Sheva)
S. Goldberg (College Park)
B. Gramsch (Mainz)
J. A. Helton (La Jolla)

Honorary and Advisory Editorial Board:

P. R. Halmos (Santa Clara) T. Kato (Berkeley) P. D. Lax (New York)

Birkhäuser Verlag Basel · Boston · Berlin M. A. Kaashoek (Amsterdam)
T. Kailath (Stanford)
H. G. Kaper (Argonne)
S. T. Kuroda (Tokyo)
P. Lancaster (Calgary)
L. E. Lerer (Haifa)
E. Meister (Darmstadt)
B. Mityagin (Columbus)
J. D. Pincus (Stony Brook)
M. Rosenblum (Charlottesville)
J. Rovnyak (Charlottesville)
D. E. Sarason (Berkeley)
H. Widom (Santa Cruz)
D. Xia (Nashville)

M. S. Livsic (Beer Sheva) R. Phillips (Stanford) B. Sz.-Nagy (Szeged)

Israel Gohberg Naum Krupnik **One-Dimensional** Linear Singular Integral Equations

Volume II General Theory and Applications

Springer Basel AG

Originally published in 1973 under the title "Vvedenie v teorijuodnomernych singuljarnych integralnych operatorov" by Stiinca, Kisinev. German translation published in 1979 under the title »Einführung in die Theorie der eindimensionalen singulären Integraloperatoren« by Birkhäuser Verlag, Basel.

Authors' addresses:

I. Gohberg School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University 69978 Tel Aviv Israel N. Krupnik Department of Mathematics Bar Ilan University Ramat Gan Israel

A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA

Deutsche Bibliothek Cataloging-in-Publication Data

Gochberg, Izrail':

One-dimensional linear singular integral equations / Israel Gohberg ; Naum Krupnik. – Basel ; Boston ; Berlin : Birkhäuser Einheitssacht.: Vvedenie v teoriju odnomernych singuljarnych integral'nych operatorov <engl.>

NE: Krupnik, Naum Y.:

Vol. 2. General theory and applications. – 1992 (Operator theory ; Vol. 54) ISBN 978-3-0348-9697-9 ISBN 978-3-0348-8602-4 (eBook) DOI 10.1007/978-3-0348-8602-4 NE: GT

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law, where copies are made for other than private use a fee is payable to »Verwertungsgesellschaft Wort«, Munich.

© 1992 Springer Basel AG Originally published by Birkhäuser Verlag Basel in 1992 Softcover reprint of the hardcover 1st edition 1992

ISBN 978-3-0348-9697-9

Contents

	Pre	face	9		
	Intr	oduction	11		
6 Preliminaries			15		
	6.1	The operator of singular integration	15		
	6.2	The space $L_p(\Gamma, \rho)$	16		
	6.3	Singular integral operators	17		
	6.4	The spaces $L_p^+(\Gamma, \rho)$, $L_p^-(\Gamma, \rho)$ and $\overset{\circ}{L_p^-}(\Gamma, \rho)$	19		
	6.5	Factorization	20		
	6.6	One-sided invertibility of singular integral operators	21		
	6.7	Fredholm operators	22		
	6.8	The local principle for singular integral operators	24		
	6.9	The interpolation theorem	25		
7 General theorems		eral theorems	27		
	7.1	Change of the curve	27		
	7.2	The quotient norm of singular integral operators	30		
	7.3	The principle of separation of singularities	34		
	7.4	A necessary condition	37		
	7.5	Theorems on kernel and cokernel of singular integral operators	39		
	7.6	Two theorems on connections between singular integral operators	41		
	7.7	Index cancellation and approximative inversion of singular integral operators	43		
	7.8	Exercises	45		
		Comments and references	47		
8	The	generalized factorization of bounded measurable functions and its	J		
	applications				
	8.1	Sketch of the problem	49		

CONTENTS

	8.2	Functions admitting a generalized factorization with respect to a curve in	
		$L_p(\Gamma, \rho)$	51
	8.3	Factorization in the spaces $L_p(\Gamma, \rho)$	53
	8.4	Application of the factorization to the inversion of singular integral operators	56
	8.5	Exercises	58
		Comments and references	60
9	Sing	gular integral operators with piecewise continuous coefficients and their	r
		lications	61
	9.1	Non-singular functions and their index	62
	9.2	Criteria for the generalized factorizability of power functions	65
	9.3	The inversion of singular integral operators on a closed curve	70
	9.4	Composed curves	73
	9.5	Singular integral operators with continuous coefficients on a composed curve	81
	9.6	The case of the real axis	93
	9.7	Another method of inversion	95
	9.8	Singular integral operators with regel functions coefficients	99
	9.9	Estimates for the norms of the operators P_{Γ}, Q_{Γ} and S_{Γ}	101
	9.10	Singular operators on spaces $H^{\circ}_{\mu}(\Gamma, \rho)$	103
		Singular operators on symmetric spaces	105
		Fredholm conditions in the case of arbitrary weights	108
		Technical lemmas	111
		Toeplitz and paired operators with piecewise continuous coefficients on the	
		spaces l_p and \tilde{l}_p	115
	9.15		122
			145
			148
10	Sing	ular integral operators on non-simple curves	151
			151
		A preliminary theorem	
		The main theorem	
		Exercises	
		Comments and references	
11	Sing	ular integral operators with coefficients having discontinuities of al-	
			165
			165
			167

6

11.3	The main theorem	170
11.4	Operators with continuous coefficients – the degenerate case	176
	• Exercises	
	Comments and references	
12 Sing	gular integral operators with bounded measurable coefficients	181
12.1	Singular operators with measurable coefficients in the space $L_2(\Gamma)$	181
12.2	Necessary conditions in the space $L_2(\Gamma)$	183
12.3	Lemmas	185
12.4	Singular operators with coefficients in $\rho_p(\Gamma)$. Sufficient conditions	188
12.5	The Helson-Szegö theorem and its generalization	191
12.6	On the necessity of the condition $a \in S_p$	194
12.7	Extension of the class of coefficients	196
12.8	Exercises	197
	Comments and references	198
13 Exa	ect constants in theorems on the boundedness of singular operators	199
13.1	Norm and quotient norm of the operator of singular integration	199
13.2	A second proof of Theorem 4.1 of Chapter 12	206
13.3	Norm and quotient norm of the operator S_{Γ} on weighted spaces $\ldots \ldots$	206
13.4	Conditions for Fredholmness in spaces $L_p(\Gamma, \rho)$	210
13.5	Norms and quotient norm of the operator $aI + bS_{\Gamma}$	213
	Exercises	
	Comments and references	221
Ref	erences	223
Sub	ject Index	231

Preface

This monograph is the second volume of a graduate text book on the modern theory of linear one-dimensional singular integral equations. Both volumes may be regarded as unique graduate text books.

Singular integral equations attract more and more attention since this class of equations appears in numerous applications, and also because they form one of the few classes of equations which can be solved explicitly.

The present book is to a great extent based upon material contained in the second part of the authors' monograph [6] which appeared in 1973 in Russian, and in 1979 in German translation. The present text includes a large number of additions and complementary material, essentially changing the character, structure and contents of the book, and making it accessible to a wider audience.

Our main subject in the first volume was the case of closed curves and continuous coefficients. Here, in the second volume, we turn to general curves and discontinuous coefficients.

We are deeply grateful to the editor Professor G. Heinig, to the translator Dr. S. Roch, and to the typist Mr. G. Lillack, for their patient work.

The authors

Ramat-Aviv, Ramat-Gan, May 26, 1991