Mathematical Surveys and Monographs

Volume 54

Homeomorphisms in Analysis

Casper Goffman Togo Nishiura Daniel Waterman

American Mathematical Society

Contents

Preface	xi	
The one dimensional case		
Mappings and measures on \mathbb{R}^n		
Fourier series	xiii	
Part 1. The One Dimensional Case	1	
Chapter 1. Subsets of \mathbb{R}	3	
1.1. Equivalence classes	3	
1.2. Lebesgue equivalence of sets	4	
1.3. Density topology	5	
1.4. The Zahorski classes	10	
Chapter 2. Baire Class 1	13	
2.1. Characterization	13	
2.2. Absolutely measurable functions	15	
2.3. Example	19	
Chapter 3. Differentiability Classes	21	
3.1. Continuous functions of bounded variation	21	
3.2. Continuously differentiable functions	27	
3.3. The class $C^{n}[0,1]$	30	
3.4. Remarks	38	
Chapter 4. The Derivative Function	41	
4.1. Properties of derivatives	41	
4.2. Characterization of the derivative	45	
4.3. Proof of Maximoff's theorem	47	
4.4. Approximate derivatives	53	
4.5. Remarks	56	
Part 2. Mappings and Measures on \mathbb{R}^n	59	
Chapter 5. Bi-Lipschitzian Homeomorphisms	61	
5.1. Lebesgue measurability	61	
5.2. Length of nonparametric curves	63	
5.3. Nonparametric area	68	
5.4. Invariance under self-homeomorphisms	71	
5.5. Invariance of approximately continuous functions	72	
5.6. Remarks	74	

Chapter 6. Approximation by Homeomorphisms 6.1. Background	77 77
6.2. Approximations by homeomorphisms of one-to-one maps	78
6.3. Extensions of homeomorphisms	80
6.4. Measurable one-to-one maps	84
Chapter 7. Measures on \mathbb{R}^n	89
7.1. Preliminaries	89
7.2. The one variable case7.3. Constructions of deformations	91 01
7.3. Constructions of deformations 7.4. Deformation theorem	91 96
7.5. Remarks	90 97
Chapter 8. Blumberg's Theorem	99
8.1. Blumberg's theorem for metric spaces	99
8.2. Non-Blumberg Baire spaces	103
8.3. Homeomorphism analogues	104
Part 3. Fourier Series	109
Chapter 9. Improving the Behavior of Fourier Series	111
9.1. Preliminaries	111
9.2. Uniform convergence	117
9.3. Conjugate functions and the Pál-Bohr theorem	120
9.4. Absolute convergence	124
Chapter 10. Preservation of Convergence of Fourier Series	131
10.1. Tests for pointwise and uniform convergence	131
10.2. Fourier series of regulated functions	138
10.3. Uniform convergence of Fourier series	149
Chapter 11. Fourier Series of Integrable Functions	159
11.1. Absolutely measurable functions	159
11.2. Convergence of Fourier series after change of variable	164
11.3. Functions of generalized bounded variation	167
11.4. Preservation of the order of magnitude of Fourier coefficients	178
Appendix A. Supplementary Material	187
Sets, Functions and Measures	187
A.1. Baire, Borel and Lebesgue	187
A.2. Lipschitzian functions	189
A.3. Bounded variation Approximate Continuity	192 195
A.4. Density topology	195
A.5. Approximately continuous maps into metric spaces	190
Hausdorff Measure and Packing	198
A.6. Hausdorff dimension	198
A.7. Hausdorff packing	199
	100
Nonparametric Length and Area	203
A.8. Nonparametric length	

	Lebesgue's lower semicontinuous area Distribution derivatives for one real variable	204 205
Bibliography		207
Index		213

CONTENTS

ix