Translations of MATHEMATICAL MONOGRAPHS

Volume 169

Ordinary Differential Equations with Constant Coefficient

S. K. Godunov

American Mathematical Society Providence, Rhode Island

Contents

.

Preface	ix
Chapter 1. Matrix Exponentials, Green Matrices, and the Lopatinskii Con-	_
dition	1
§1. Linear systems of equations with constant coefficients. The unique-	
ness and existence of a solution to the Cauchy problem for homo-	-
geneous equations	1
§2. Fundamental matrices and matrix exponentials	9
§3. Estimates for the matrix exponential. Polynomial representation	14
of the matrix exponential	14
34. Fundamental systems of solutions to a linear equation of higher	01
order SE The continuation of the study of fundamental contants of colutions	21
35. The continuation of the study of fundamental systems of solutions	20
so a linear equation of higher order	32
go. Computation of the matrix exponential by means of reducing ma-	12
87 The definition of a Green matrix Existence and uniqueness	40
88. The polynomial representation of the Green matrix. Green func-	70
tions	53
89 Nonhomogeneous linear equations	62
\$10. The representation of the matrix exponential and of the Green	02
matrix by contour integrals	76
§11. Boundary-value problem on a segment	82
§12. The closeness estimates for solutions to the boundary-value prob-	
lems with close coefficients and close right-hand sides	90
§13. The Lopatinskii condition	96
$\S14$. The Green matrices for boundary-value problems on a half-line	105
Chapter 2. Quadratic Lyapunov Functions	111
§1. Sufficient conditions for the global existence of a solution to a vec-	
tor differential equation	111
§2. The Lyapunov stability	118
§3. The matrix Lyapunov equation	123
§4. The Lyapunov functions	128
§5. The theorems on stability from the first approximation	135
§6. The Hermite theorem	141
§7. The Routh–Hurwitz criterion for stability	150

Chapter 3. Qualitative Properties of Problems and Algorithmic Aspects	159
§1. The computation of the matrix exponential and solution of the	
Cauchy problem	159
§2. Computational difficulties in the Hurwitz problem and their solu-	
tions	165
§3. Solving of boundary-value problems by the orthogonal sweep	
method	174
§4. The two-way sweep for the computation of the Green matrices	186
§5. Integral and local estimates for the Green matrix	191
§6. Computation of the Green matrix on an infinite line and the de-	
termination of the dichotomy parameter	197
Chapter 4. Linear Control Systems	209
§1. Controllability and observability	209
§2. The simplest variational control problem	214
§3. Stabilizability	231
§4. Variational approach to the construction of a stabilizing control	237
§5. Hamiltonian systems of equations and their use in the study of	
stabilizability	242
§6. Further study of variational problems on a half-line. The notion of	
detectability	250
§7. The Lur'e–Riccati matrix equation	263
§8. The use of variational problems in the study of control systems	271
References	279
Index	281