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Preface 

This book describes the classical aspects of the variational calculus which are of 
interest to analysts, geometers and physicists alike. Volume 1 deals with the for­
mal apparatus of the variational calculus and with nonparametric field theory, 
whereas Volume 2 treats parametric variational problems as weIl as Hamilton­
Jacobi theory and the classical theory of partial differential equations of first 
order. In a subsequent treatise we shall describe developments arising from 
Hilbert's 19th and 20th problems, especially direct methods and regularity 
theory. 

Of the classical variational calculus we have particularly emphasized the 
often neglected theory of inner variations, i.e. of variations of the independent 
variables, which is a source of useful information such as monotonicity for­
mulas, conformality relations and conservation laws. The combined variation of 
dependent and independent variables leads to the general conservation laws of 
Emmy Noether, an important tool in exploiting symmetries. Other parts of this 
volume deal with Legendre-Jacobi theory and with field theories. In particular 
we give a detailed presentation of one-dimensional field theory for non para­
metric and parametric integrals and its relations to Hamilton-Jacobi theory, 
geometrieal optics and point mechanics. Moreover we discuss various ways of 
exploiting the notion of convexity in the calculus of variations, and field theory 
is certainly the most subtle method to make use of convexity. We also stress the 
usefulness of the concept of a null Lagrangian which plays an important role in 
several instances. In the final part we give an exposition of Hamilton-Jacobi 
theory and its connections with Lie's theory of contaet transformations and 
Cauchy's integration theory of partial differential equations. 

For better readability we have mostly worked with loeal coordinates, but 
the global point of view will always be conspicuous. Nevertheless we have at 
least once outlined the coordinate-free approach to manifolds, together with an 
outlook onto symplectic geometry. 

Throughout this volume we have used the classical indirect method of the 
calculus of variations solving first Euler's equations and investigating there­
after which solutions are in fact minimizers (or maximizers). Only in Chap­
ter 8 we have applied direct methods to solve minimum problems for para­
metric integrals. One of these methods is based on results of field theory, the 
other uses the eoncept of lower semicontinuity of functionals. Direct methods 
of the calculus of variations and, in partieular, existence and regularity results 
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for minimizers of multiple integrals will be subsequently presented in a sepa­
rate treatise. 

We have tried to write the present book in such a way that it can easily be 
read and used by any graduate student of mathematics and physics, and by 
nonexperts in the field. Therefore we have often repeated ideas and computa­
tions if they appear in a new context. This approach makes the reading occa­
sionally somewhat repetitious, but the reader has the advantage to see how 
ideas evolve and grow. Moreover he will be able to study most parts of this 
book without reading all the others. This way a lecturer can comfortably use 
certain parts as text for a one-term course on the calculus of variations or 
as material for a reading seminar. 

We have included a multitude of examples, some of them quite intricate, 
since examples are the true lifeblood of the calculus of variations. To study 
specific examples is often more useful and illustrative than to follow all ramifica­
tions of the general theory. Moreover the reader will often realize that even 
simple and time-honoured problems have certain peculiarities which make it 
impossible to directly apply general results. 

In the Scholia we present supplementary results and discuss references to 
the literature. In addition we present historical comments. We have consulted 
the original sources whenever possible, but since we are no historians we might 
have more than once erred in our statements. Some background material as weIl 
as hints to developments not discussed in our book can also be found in the 
Supplements. 

A last word concerns the size of our project. The reader may think that by 
writing two volumes about the classical aspects of the calculus of variations 
the authors should be able to give an adequate and complete presentation of 
this field. This is unfortunately not the case, partially because of the limited 
knowledge ofthe authors, and partially on account ofthe vast extent ofthe field. 
Thus the reader should not expect an encyclopedic presentation of the entire 
subject, but merely an introduction in one of the oldest, but nevertheless very 
lively areas of mathematics. We hope that our book will be of interest also to 
experts as we have included material not everywhere available. Also we have 
examined an extensive part of the classical theory and presented it from a mod­
ern point of view. 

It is a great pleasure for us to thank friends, colleagues, and students who 
have read several parts of our manuscript, pointed out errors, gave us advice, 
and helped us by their criticism. In particular we are very grateful to Dieter 
Ameln, Gabriele Anzellotti, Ulrich Dierkes, Robert Finn, Karsten Große­
Brauckmann, Anatoly Fomenko, Hermann Karcher, Helmut Kaul, Jerry 
Kazdan, Rolf Klötzler, Ernst Kuwert, Olga A. Ladyzhenskaya, Giuseppe 
Modica, Frank Morgan, Heiko von der Mosel, Nina N. Uraltseva, and Rüdiger 
Thiele. The latter also kindly supported us in reading the galley proofs. We 
are much indebted to Kathrin Rhode who helped us to prepare several of 
the examples. Especially we thank Gudrun Turowski who read most of our 
manuscript and corrected numerous mistakes. Klaus Steffen provided us with 
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example [[J in 3,1 and the regularity argument used in 3,6 nr. 11. Without the 
patient and excellent typing and retyping of our manuscripts by Iris Pützer and 
Anke Thiedemann this book could not have been completed, and we appreciate 
their invaluable help as weIl as the patience of our Publisher and the constant 
and friendly encouragement by Dr. Joachim Heinze. Lase but not least we would 
like to extend our thanks to Consiglio Nazionale delle Ricerche, to Deutsche 
Forschungsgemeinschaft, to Sonderforschungsbereich 256 of Bonn University, 
and to the Alexander von Humboldt Foundation, which have generously supported 
our collaboration. 

Bonn and Firenze, February 14, 1994 Mariano Giaquinta 
Stefan Hildebrandt 
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Introduction 

The Calculus of Variations is the art to find optimal solutions and to describe 
their essential properties. In daily life one has regularly to decide such questions 
as which solution of a problem is best or worst; which object has some property 
to a highest or lowest degree; what is the optimal strategy to reach some goal. 
For example one might ask what is the shortest way from one point to another, 
or the quiekest connection of two points in a certain situation. The isoperimetrie 
problem, already considered in antiquity, is another question of this kind. Here 
one has the task to find among all closed curves of a· given length the one 
enclosing maximal area. The appeal of such optimum problems consists in the 
fact that, usually, they are easy to formulate and to understand, but much less 
easy to solve. For this reason the calculus of variations or, as it was called in 
earlier days, the isoperimetrie method has been a thriving force in the develop­
ment of analysis and geometry. 

An ideal shared by most craftsmen, artists, engineers, and scientists is the 
principle of the economy of means: What you can do, you can do simply. This 
aesthetic concept also suggests the idea that nature proceeds in the simplest, the 
most efficient way. Newton wrote in his Principia: "Nature does nothing in va in, 
and more is in vain when less will serve; for Nature is pleased with simplicity and 
affects not the pomp of superj1uous causes." Thus it is not surprising that from the 
very beginning of modern science optimum principles were used to formulate 
the "laws of nature", be it that such principles particularly appeal to scientists 
striving toward unification and simplification of knowledge, or that they seem 
to reflect the preestablished harmony of our uni verse. Euler wrote in his 
Methodus inveniendi [2] from 1744, the first treatise on the calculus of varia­
tions: "Because the shape of the whole universe is most perfeet and, in fact, 
designed by the wisest creator, nothing in all of the world will occur in which no 
maximum or minimum rule is somehow shining forth." Our belief in the best of all 
possible worlds and its preestablished harmony claimed by Leibniz might now 
be shaken; yet there remains the fact that many if not alllaws of nature can be 
given the form of an extremal principle. 

The first known principle of this type is due to Heron from Alexandria 
(aboutlOO A.D.) who explained the law of reflection of light rays by the postu­
late that light must always take the shortest path. In 1662 Fermat succeeded in 
deriving the law of refraction of light from the hypothesis that light always 
propagates in the quiekest way from one point to another. This assumption is now 
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called Fermat's principle.1t is one ofthe pillars on which geometrie optics rests; 
the other one is Huygens's principle which was formulated about 15 years later. 
Further, in his letter to De la Chambre from January 1, 1662, Fermat motivated 
his principle by the following remark: "La nature agit toujour par les voies les 
plus courtes." (Nature always acts in the shortest way.) 

About 80 years later Maupertuis, by then President of the Prussian Acad­
emy of Sciences, resumed Fermat's idea and postulated his metaphysical princi­
pie of the parsimonious universe, which later became known as "principle of 
least action" or "Maupertuis's principle". He stated: If there occurs some change 
in nature, the amount of action necessary for this change must be as small as 
possible. 

"Action" that nature is supposed to consume so thriftily is a quantity intro­
duced by Leibniz wh ich has the dimension "energy x time". It is exactly that 
quantity which, according to Planck's quantum principle (1900), comes in inte­
ger multiples of the elementary quantum h. 

In the writings of Maupertuis the action principle remained somewhat 
vague and not very convincing, and by Voltaire's attacks it was mercilessly 
ridiculed. This might be one of the reasons why Lagrange founded his M echani­
que analitique from 1788 on d' Alembert's principle and not on the least action 
principle, although he possessed a fairly general mathematical formulation of it 
already in 1760. Much later Hamilton and Jacobi formulated quite satisfactory 
versions of the action principle for point mechanics, and eventually Heimholtz 
raised it to the rank of the most generallaw of physics. In the first half of this 
century physicists seemed to prefer the formulation of naturallaws in terms of 
space-time differential equations, but recently the principle of least action had 
a remarkable comeback as it easily lends itself to aglobai, coordinate-free setup 
of physical "field theories" and to symmetry considerations. 

The development of the caIculus of variations began briefly after the inven­
tion of the infinitesimal caIculus. The first problem gaining international farne, 
known as "problem of quiekest descent" or as "brachystochrone problem", was 
posed by Johann Bernoulli in 1696. He and his older brother Jakob Bernoulli 
are the true founders of the new field, although also Leibniz, Newton, Huygens 
and l'Hospital added important contributions. In the hands of Euler and 
Lagrange the caIculus of variations became a flexible and efficient theory appli­
cable to a multitude of physical and geometrie problems. Lagrange invented the 
b-caIculus which he viewed to be a kind of "higher" infinitesimal caIculus, and 
Euler showed that the b-caIculus can be reduced to the ordinary infinitesimal 
caIculus. Euler also invented the multiplier method, and he was the first to treat 
variational problems with differential equations as subsidiary conditions. The 
development of the caIculus of variations in the 18th century is described in the 
booklet by Woodhouse [1] from 1810 and in the first three chapters of H.H. 
Goldstine's historical treatise [1]. In this first period the variational caIculus 
was essentially concerned with deriving necessary conditions such as Euler's 
equations which are to be satisfied by minimizers or maximizers of variational 
problems. Euler mostly treated variational problems for single integrals where 
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the corresponding Euler equations are ordinary differential equations, which he 
solved in many cases by very skillful and intricate integration techniques. The 
spirit of this development is reflected in the first parts of this volume. To be fair 
with Euler's achievements we have to emphasize that he treated in [2] many 
more one-dimensional variational problems than the reader can find anywhere 
else including our book, some ofwhich are quite involved even for a mathemati­
cian of today. 

However, no sujJicient conditions ensuring the minimum property of solu­
tions of Euler's equations were given in this period, with the single exception of 
a paper by Johann Bernoulli from 1718 which remained unnoticed for about 
200 years. This is to say, analysts were only concerned with determining solu­
tions of Euler equations, that is, with stationary curves of one-dimensional 
variational problems, while it was more or less taken for granted that such 
stationary objects furnish areal extremum. 

The sufficiency question was for the first time systematically tackled in 
Legendre's paper [1] from 1788. Here Legendre used the idea to study the 
second variation of a functional for deciding such questions. Legendre's paper 
contained some errors, pointed out by Lagrange in 1797, but his ideas proved to 
be fruitful when Jacobi resumed the question in 1837. In his short paper [1] he 
sketched an entire theory of the second variation including his celebrated theory 
of conjugate points, but all of his results were stated with essentially no proofs. 
It took a wh oIe generation of mathematicians to fill in the details. We have 
described the basic features of the Legendre-Jacobi theory of the second varia­
tion in Chapters 4 and 5 of this volume. 

Euler treated only a few variation al problems involving multiple integrals. 
Lagrange derived the "Euler equations" for double integrals, i.e. the necessary 
differential equations to be satisfied by minimizers or maximizers. For example 
he stated the minimal surface equation which characterizes the stationary sur­
face of the nonparametric area integral. However he did not indicate how one 
can obtain solutions of the minimal surface equation or of any other related 
Euler equation. Moreover neither he nor anyone else of his time was able to 
derive the natural boundary conditions to be satisfied by, say, minimizers of a 
double integral subject to free boundary conditions since the tool of "integra­
tion by parts" was not available. The first to successfully tackle two-dimensional 
variational problems with free boundaries was Gauss in his paper [3] from 
1830 where he established a variational theory of capillary phenomena based on 
Johann Bernoulli's principle of virtual work from 1717. This principle states that 
in equilibrium no work is needed to achieve an infinitesimal displacement of a 
mechanical system. Using the concept of a potential energy which is thought 
to be attached to any state of a physical system, Bernoulli's principle can be 
replaced by the following hypothesis, the principle of minimal energy: The equi­
librium states of a physical system are stationary states of its potential energy, 
and the stable equilibrium states minimize energy among all other "virtual" 
states which lie close-by. 

For capillary surfaces not subject to any gravitational forces the potential 
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energy is proportional to their surface area. This explains why the phenomeno­
logical theory of soap films is just the theory of surfaces of minimal area. 

After Gauss free boundary problems were considered by Poisson, Ostro­
grad ski, Delaunay, Sarrus, and Cauchy. In 1842 the French Academy proposed 
as topic for their great mathematical prize the problem to derive the natural 
boundary conditions which together with Euler's equations must be satisfied by 
minimizers and maximizers of free boundary value problems for multiple inte­
grals. Four papers were sent in; the prize went to Sarrus with an honourable 
mentioning of Delaunay, and in 1861 Todhunter [1] held Sarrus's paper for 
"the most important original contribution to the calculus of variations which 
has been made during the present century". It is hard to believe that these 
formulas which can nowadays be derived in a few lines were so highly appreci­
ated by the Academy, but we must realize that in those days integration by 
parts was not a fully developed too1. This example shows very well how the 
problems posed by the variational calculus forced analysts to develop new tools. 
Time and again we find similar examples in the history of this field. 

In Chapters 1-4 we have presented all formal aspects of the calculus of 
variations including all necessary conditions. We have simultaneously treated 
extrema of single and multiple integrals as there is barely any difference in 
the degree of difficulty, at least as long as one sticks to variational problems 
involving only first order derivatives. The difference between one- and multi­
dimensional problems is rarely visible in the formal aspect of the theory but 
becomes only perceptible when one really wants to construct solutions. This is 
due to the fact that the necessary conditions for one-dimensional integrals are 
ordinary differential equations, whereas the Euler equations for multiple inte­
grals are partial differential equations. The problem to solve such equations 
under prescribed boundary conditions is a much more difficult task than the 
corresponding problem for ordinary differential equations; except for some spe­
cial cases it was only solved in this century. As we need rather refined tools of 
analysis to tackle partial differential equations we deal here only with the formal 
aspects of the calculus of variations in full generality while existence questions 
are merely studied for one-dimensional variational problems. The existence and 
regularity theory of multiple variational integrals will be treated in aseparate 
treatise. 

Scheeffer and Weierstrass discovered that positivity of the second variation 
at a stationary curve is not enough to ensure that the curve furnishes a local 
minimum; in general one can only show that it is a weak minimizer. This means 
that the curve yields a minimum only in comparison to those curves whose 
tangents are not much different. 

In 1879 Weierstrass discovered a method which enables one to establish a 
strong minimum property for solutions of Euler's equations, i.e. for stationary 
curves; this method has become known as Weierstrass field theory. In essence 
Weierstrass's method is a rather subtle convexity argument which uses two 
ingredients. First one employs a local convexity assumption on the integrand of 
the variational integral which is formulated by means of Weierstrass's excess 



Introduction XV 

function. Secondly, to make proper use ofthis assumption one has to embed the 
given stationary curve in a suitable field of such curves. This field embedding 
can be interpreted as an introduction of a particular system of normal coordi­
nates which very much simplify the comparison of the given stationary curve 
with any neighbouring curve. In the plane it suffices to embed the given curve in 
an arbitrarily chosen field of stationary curves while in higher dimensions one 
has to embed the curve in a so-called Mayer field. 

In Chapter 6 of this volume we shall describe Weierstrass field theory for 
nonparametrie one-dimensional variational problems and the contributions of 
Mayer, Kneser, Hilbert and Caratheodory. The corresponding field theory for 
parametrie integrals is presented in Chapter 8. There we have also a first glimpse 
at the so-called direct method of the calculus of variations. This is a way to 
establish directly the existence of minimizers by means of set-theoretic argu­
ments; another treatise will entirely be devoted to this subject. In addition we 
sketch field theories for multiple integrals at the end of Chapters 6 and 7. 

In Chapter 7 we describe an important involutory transformation, which 
will be used to derive a dual picture of the Euler-Lagrange formalism and of 
field theory, called canonical formalism. In this description the dualism ray 
versus wave (or: particle-wave) becomes particularly transparent. The canon­
ical formalism is apart of the Hamilton-lacobi theory, of which we give a self­
contained presentation in Chapter 9, together with abrief introduction to sym­
plectic geometry. This theory has its roots in Hamilton's investigations on geo­
metrical optics, in particular on systems of rays. Later Hamilton realized that 
his formalism is also suited to describe systems of point mechanics, and Jacobi 
developed this formalism further to an etTective integration theory of ordinary 
and partial ditTerential equations and to a theory of canonical mappings. The 
connection between canonical (or symplectic) transformations and Lie's theory of 
contact transformations is discussed in Chapter 10 where we also investigate the 
relations between the principles of Fermat and Huygens. Moreover we treat 
Cauchy's method of integrating partial ditTerential equations of first order by the 
method of characteristics and illustrate the connection of this technique with 
Lie's theory. 

The reader can use the detailed table of contents with its numerous catch­
words as a guideline through the book; the detailed introductions preceding 
each chapter and also every section and subsection are meant to assist the 
reader in obtaining a quick orientation. A comprehensive glimpse at the litera­
ture on the Calculus of Variations is given at the end of Volume 2. Further 
references can be found in the Scholia to each chapter and in our bibliography. 
Moreover, important historical references are often contained in footnotes. As 
important examples are sometimes spread over several seetions, we have added 
a list of examples, which the reader can also use to locate specific ex am pies for 
which he is looking. 
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