Raymond Gérard Hidetoshi Tahara

Singular Nonlinear Partial Differential Equations

Contents

P :	refac	e	V
1	Ope	rators with regular singularities: One variable case	1
	Intro	oduction	
	1.1	Notations, definitions, examples	
	1.2	The good operators	4
	1.3	A class of operators with a regular singularity	7
	1.4	Applications to differential equations	19
		1.4.1 Non linear differential equations	19
		1.4.2 Some particular cases	20
	1.5	The Maillet theorem	31
		1.5.1 A generalization of theorem 1.3.5	31
		1.5.2 Application: The theorem of E. Maillet	36
		1.5.3 Some notes on the theorem of E. Maillet	40
2	Ope	rators with regular singularities: Several variables case	42
	Intr	oduction	42
	Α	Formal theory	
~	2.1	Notations	42
	2.2	Linear operators on $\mathbb{C}[[x]]$	43
	2.3	Non linear operators on \mathfrak{M}_f	
	2.4	Solutions of linear equations	48
	2.5	Solutions of non linear equations	51
		2.5.1 Non linear equations with an affine part in $(Op.l.f)_{b,t}$.	. 51
		2.5.2 Non linear equations without affine part	54
	В	Analytic theory	54
	2.6	Notations and definitions	
	2.7	The good operators and the notion of domination	55
		2.7.1 In $(Op.l.f)_t$	55
		2.7.2 In $(Op.l.f)_{b,t}$	56
		2.7.3 In $(Op.l.f)_{b,d}$	57
	2.8	A class of operators having a regular singularity	57
		2.8.1 In $(Op.l.f)_d$	58
		2.8.2 In $(Op.l.f)_{b.d}$	63
		2.8.3 In $(Op.l.f)_{b,t}$	69
	2.9	Applications to partial differential equations	70
		2.9.1 With a Poincaré vector field	70
		2.9.2 The partial differential equations of the hypergeometric fund	- -
		tions of P. Appell	70

		2.9.3	The systems of partial differential equations of the confluent hypergeometric functions in two variables	73
		2.9.4	The systems of partial differential equations of the hypergeo-	.0
			metric functions in n variables of G. Lauricella	74
		2.9.5	A theorem of M. Kashiwara, T. Kawai, and J. Sjöstrand	76
3	Forn	nal and	l convergent solutions of singular partial differential equ	a-
	tions	5		77
	Intro	oduction	n	77
	3.1	Notati	ons and definitions	77
	3.2	Holom	orphic solutions of certain equations	81
		3.2.1	Solution of the linear equation	82
		3.2.2	Solution of the non linear equation	88
	პ.პ ე₄	Lquati	ons with parameters	92
	3.4 25	The en	plication: A theorem of S. Kaplan	100
	3.0	i ne ca		100
4	Loca	d stud	y of differential equations of the form $xy' = f(x,y)$ near	r
	x = 0) 	_	111
			1	111
	4.1	Dohowi	ing of two differential equations	111
	4.2 4.3	Local s	study of a differential equation near a singular point of regular	110
		type .		110
		4.3.1	The singularities of solutions of the Priot Powerst equation	110
	44	4.5.2 Study	of the Hukuhara equation and of the Hukuhara function	135
	1. 1	Study		100
5	Hold	morph	ic and singular solutions of non linear singular first orde	r
	part	al diffe	erential equations	138
		Notot:	1	138
	อ.1 ะ จ	Notati	ons and definitions	139
	0.2 5.2	Holom	orphic solutions	140
	5.3 5.4	Singula	orphic solutions	141
	5.5	Unique	press of the solution	153
	5.6	Proof	of the main theorem 5.2.3	156
	5.7	Remar	ks	159
	5.8	Supple	mentary result	159
6	Mail	let's ta	vne theorems for non linear singular partial differentia	1
0	equa	tions	", "	161
	Intro	duction	1	161
	6.1	Implici	t function theorem	163
	6.2	Non li	near equations with first order linear part	164
	6.3	Non lii	near equations with higher order linear part	179

VII

	6.4 6.5	Formal Gevrey index for a particular type of equations — Examples Supplementary results	181 184
7	Mail equa Intro 7.1 7.2 7.3 7.4 7.5 7.6	Illet's type theorems for non linear singular partial differential differentia	187 187 187 189 192 195 198 200
8	Holo	omorphic and singular solutions of non linear singular partial	l 203
	Intro	aduction	203
	8.1	Holomorphic solutions	206
	8.2	Singular solutions: Special case	208
	8.3	Singular solutions: General case	213
	8.4	Asymptotic study	221
	8.5	Completion of the proof of the main theorem	228
~	On t	the existence of holomorphic solutions of the Cauchy problem	
			2
9	for r	non linear partial differential equations	1 234
9	for r	non linear partial differential equations of the Cauchy problem aduction	234 234
y	for r Intro 9.1	non linear partial differential equations of the Cauchy problem oduction	234 234 234
9	for r Intro 9.1 9.2	non linear partial differential equations of the Cauchy problem oduction	234 234 234 234 236
9	for r Intro 9.1 9.2 9.3	non linear partial differential equations oduction	234 234 234 236 238
a	for r Intro 9.1 9.2 9.3 9.4	non linear partial differential equations oduction	234 234 234 236 238 242
9 1(for r Intro 9.1 9.2 9.3 9.4	non linear partial differential equations oduction Notations and definitions Results Proof of theorem 9.2.1 Proof of theorem 9.2.3 Illet's type theorems for non linear singular integro-differential	234 234 234 236 238 242
9 1(for r Intro 9.1 9.2 9.3 9.4)Mail equa	non linear partial differential equations non linear partial differential equations oduction Notations and definitions Results Proof of theorem 9.2.1 Proof of theorem 9.2.3 Illet's type theorems for non linear singular integro-differential ations	234 234 234 236 238 242 1 246
9 1(for r Intro 9.1 9.2 9.3 9.4 DMail equa Intro	non linear partial differential equations non linear partial differential equations oduction Notations and definitions Results Proof of theorem 9.2.1 Proof of theorem 9.2.3 Proof of theorems for non linear singular integro-differential non linear singular lintegro-differential notaction non linear singular lintegro-differential </td <td>234 234 234 236 238 242 242 246 246</td>	234 234 234 236 238 242 242 246 246
9 1(for r Intro 9.1 9.2 9.3 9.4)Mail equa Intro 10.1	and linear partial differential equations boduction oductions and definitions Results Proof of theorem 9.2.1 Proof of theorem 9.2.3 Illet's type theorems for non linear singular integro-differential ations oduction Notations and definitions	234 234 234 236 238 242 1 246 246 246
9	for r Intro 9.1 9.2 9.3 9.4 DMail equa Intro 10.1 10.2	Interestinct of notomorphic solutions of the Cauchy problem non linear partial differential equations oduction Notations and definitions Proof of theorem 9.2.1 Proof of theorem 9.2.3 Proof of theorems for non linear singular integro-differential ations oduction Notations and definitions Output The main theorem	234 234 234 236 238 242 242 246 246 246 248
9	for r Intro 9.1 9.2 9.3 9.4 DMail equa Intro 10.1 10.2 10.3	Interestion existence of notomorphic solutions of the Cauchy problem non linear partial differential equations oduction Notations and definitions Proof of theorem 9.2.1 Proof of theorem 9.2.3 Illet's type theorems for non linear singular integro-differential ations oduction Notations and definitions Construction of the formal solution	234 234 234 236 238 242 242 246 246 246 246 246 248 250
9	for r Intro 9.1 9.2 9.3 9.4 DMail equa Intro 10.1 10.2 10.3 10.4	non linear partial differential equations oduction Notations and definitions Results Proof of theorem 9.2.1 Proof of theorem 9.2.3 Illet's type theorems for non linear singular integro-differential ations oduction Notations and definitions Oduction Source Illet's type theorems for non linear singular integro-differential ations oduction Oduction Source Some discussions Output	234 234 234 236 238 242 246 246 246 246 246 248 250 253 253
9	for r Intro 9.1 9.2 9.3 9.4 DMail equa Intro 10.1 10.2 10.3 10.4 10.5	The main theorem \dots in the formal solution in the case $s_l = 1$.	234 234 234 236 238 242 246 246 246 246 248 250 253 258 258
9	for r Intro 9.1 9.2 9.3 9.4 0 Mail equa Intro 10.1 10.2 10.3 10.4 10.5 10.6	Interesting existence of notomorphic solutions of the Cauchy problem non linear partial differential equations oduction Notations and definitions Proof of theorem 9.2.1 Proof of theorem 9.2.3 Proof of theorem 9.2.3 Ilet's type theorems for non linear singular integro-differential ations oduction Notations and definitions Outcion Notations and definitions Construction of the formal solution Some discussions Convergence of the formal solution in the case $s_l > 1$ Supplementary results and remark	234 234 234 236 238 242 246 246 246 246 246 246 246 248 250 253 258 261 263
9	for r Intro 9.1 9.2 9.3 9.4 0Mail equa Intro 10.1 10.2 10.3 10.4 10.5 10.6 10.7	Interesting existence of noninorphic solutions of the Cauchy problem non linear partial differential equations oduction Notations and definitions Results Proof of theorem 9.2.1 Proof of theorem 9.2.3 Illet's type theorems for non linear singular integro-differential ations oduction Notations and definitions Oduction Notations and definitions Construction of the formal solution Some discussions Convergence of the formal solution in the case $s_l = 1$ Supplementary results and remark	234 234 234 236 238 242 246 246 246 246 246 248 250 253 258 261 263
9 1(for r Intro 9.1 9.2 9.3 9.4 DMail equa Intro 10.1 10.2 10.3 10.4 10.5 10.6 10.7 ibliog	The main theorem \dots	234 234 234 236 238 242 246 246 246 246 246 246 253 258 261 263 264