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Foreword 
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... utinam intelligere possim rationacinationes 
pulcherrimas quae e propositione concisa DE 
QUADRATUM NIHILO EXAEQUARI fiuunt. 

( ... if I could only understand the beautiful con
sequence following from the concise proposition 
d2 = 0.) 

From Henri Cartan Laudatio on receiving the de
gree of Doctor Honoris Causa, Oxford University, 
1980 

Homological algebra first arose as a language for describing topological prop
erties of geometrical objects. The emergence of a new language is always an 
important event in the development of mathematics: Euclidean plane and 
spatial geometry, Cartesian analytic geometry, the formalization of Newton's 
fluents and fluxions by Leibniz and later by Lagrange start the series to 
which homological algebra can be added. As with every successful language, 
homological algebra quickly realized its tendencies for self-development. As 
with every successful mathematical language, it rapidly began to expand its 
semantics, that is, to describe things that it was not originally designed to 
describe. The computation of the index of an elliptic operator, exact esti
mates for the number of solutions of congruences modulo a prime, the theory 
of hyperfunctions, anomalies in quantum field theory - these are only some 
of the contemporary applications of homological ideas. 

The history of homological algebra can be divided into three periods. 
The first one starts in the 1940's with the classical works of Eilenberg and 
MacLane, D.K. Faddeev, and R. Baer and ends with the appearance in 1956 of 
the fundamental monograph "Homological Algebra" by Cartan and Eilenberg 
which has lost none of its significance up to the present day. 

A. Grothendieck's long paper "Sur quelques points d'algebre homologique" 
published in 1957 (its appearance had been delayed three years) marks the 
starting point of the second period, which was dominated by the influence of 
Grothendieck and his school of algebraic geometry. 
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The third period, which extends up to the present time, is marked by 
the ever-increasing use of derived categories and triangulated categories. The 
basic technique was developed in the thesis of Grothendieck's student J.-L. 
Verdier in 1963, but was slow in spreading beyond the confines of algebraic 
geometry. Only in the last fifteen years has the situation changed. First in the 
work of M. Sato and his school on microlocal analysis, then in the theory of 
D-modules and perverse sheaves with applications to representation theory, 
derived categories started to be used as the most suitable instrument. 

We now try to characterize these three periods, although we should apol
ogize to the reader for our subjective evaluation and judgment and for the 
incompleteness of the material: of course, many important developments do 
not fit into our rigid scheme. 

The book by Cartan and Eilenberg contains essentially all the construc
tions of homological algebra that constitute its computational tools, namely 
standard resolutions and spectral sequences. No less important, it contains an 
axiomatic definition of derived functors of additive functors on the category 
of modules over a ring. 

It was this idea that determined the contours of the second period. The 
logic of the internal development of analytic and algebraic geometry led to the 
formulation of the notion of a sheaf and to the realization of the idea that the 
natural argument of a homology theory is a pair consisting of a space with a 
sheaf on it, rather than just a space (or a space and a coefficient group). Here 
the fundamental contribution of H. Cartan's seminar and J.-P. Serre's pa
per "Faisceaux algebriques coherents" should be mentioned. Grothendieck's 
paper of 1957 quoted above stresses the analogy between pairs (space, sheaf 
of abelian groups on it) and pairs (ring, module over it) from the homologi
cal point of view and emphasizes the idea that sheaf cohomology should be 
defined as the derived functor of global sections. 

The break with the axiomatic homology and cohomology theory of Eilen
berg and Steenrod is in that now an abelian object (a sheaf), rather than 
a non-abelian one (a space), serves as a variable argument in a cohomology 
theory. More precisely, a homology or a cohomology theory with fixed co
efficients according to Eilenberg and Steenrod is a graded functor from the 
category of topological spaces into abelian groups that satisfies certain axioms 
by which it is uniquely determined. The most important of these axioms are 
the specification of the homology (or cohomology) of the point, and the exact 
sequence associated with the "excision axiom". The cohomology theory of a 
fixed topological space according to Grothendieck is a graded functor from 
the category of sheaves of abelian groups on this space into abelian groups, 
also satisfying a number of axioms by which it is uniquely determined. The 
most important of these are the specification of zero-dimensional cohomol
ogy as global sections and the exact sequence associated with a short exact 
sequence of sheaves. 
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The development of this idea led to a very far-reaching generalization 
of basic notions of algebraic geometry - Grothendieck topologies and topoi. 
The essence of this generalization is that since the cohomological properties 
of a space are completely determined by the category of sheaves over it, it 
is these categories that should be the primary objects of study in topology, 
rather than topological spaces themselves. After a suitable axiomatization of 
the properties of such categories we arrive at the notion of a topos. The devel
opment of these abstract ideas was motivated by a very concrete problem -
the famous conjectures of A. Weil on the number of solutions of congruences 
modulo a prime. The very statements of these conjectures include the assump
tion about the existence of a certain cohomology theory of algebraic varieties 
in characteristic p > 0, which would allow us to apply to this situation the 
Lefschetz fixed point formula; a cohomology theory of this type was provided 
by the cohomology of the etale topos constructed by A. Grothendieck and 
developed by his students. 

The main product of the homological algebra of this period was the com
putation and properties of various derived functors RP F, where F is the 
functor of global sections, of direct image, of tensor product and so on. These 
derived functors arise as the cohomology of complexes of the form F(T), 
where T are resolutions consisting of injective, projective, fiat, or some other 
objects suitably adapted to F. The choice of a resolution is highly non-unique, 
but RP F does not depend on this choice. 

In the course of time it came to be understood that one should study all 
complexes, rather that just resolutions T (and complexes obtained by apply
ing functors to these resolutions), but modulo a quite complicated equivalence 
relation, which identifies certain complexes having the same cohomology. 

The final version of this equivalence relation seems still not to be com
pletely understood. However, a working definition which has proved its worth 
was formulated in Verdier's thesis of 1963. The categories of complexes ob
tained in this way are called derived categories, and axiomatization of their 
properties leads to the notion of triangulated categories. 

It seems to us that the main feature of the third period of homological al
gebra is the development of a special kind of "thinking in terms of complexes" 
as opposed to the "thinking in terms of objects and their cohomological in
variants" that was typical for the first two periods. Perhaps this appears 
most vividly in the theory of perverse sheaves; it was shown that the coho
mological properties of topological manifolds extend to a substantial degree 
to spaces with singularities, if we take as coefficients not sheaves but special 
complexes of sheaves (as objects of the corresponding derived category). The 
conormal complexes of Grothendieck and Illusie and the dualizing complexes 
of Grothendieck and Verdier can be considered as earlier constructions of the 
same kind. 
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This book is intended as an introductory textbook on the technique of derived 
categories. Up to now, as far as we know, a mathematician willing to learn 
this subject has had to turn either to the two original sources, the abstract of 
Verdier's thesis and the notes of Hartshorne's seminar, or to the oral tradition, 
in those mathematical centers where it still has been maintained. 

Thus the central part of the book is Chaps. III-IV, and the reader with 
even a slight acquaintance with abelian categories and functors can start 
directly from Chap. III. 

Chapter II is directed to the reader who has hardly had anything to 
do with categories, and we have tried to make clear the intuitive meaning 
of standard categorical constructions, and to give examples of "thinking in 
categories". The main practical aim of this chapter is an introduction to 
abelian categories. 

Finally, Chaps. I and V resulted from our attempt (which had cost us a 
lot of trouble) to separate off homological algebra from algebraic topology, 
without burning the bridge between them. Triangulated spaces and simplicial 
sets are perhaps the most direct methods of describing topology in terms of 
algebra, and we decided to start the book with an introduction to simplicial 
methods. On the other hand, algebraic topology is unthinkable without ho
motopy theory, and the book ends with a treatment of the foundations of 
homotopic algebra in Chap. V. 

We worked on this book with the disquieting feeling that the development 
of homological algebra is currently in a state of flux, and that the basic 
definitions and constructions of the theory of triangulated categories, despite 
their widespread use, are of only preliminary nature (this applies even more 
to homotopic algebra). There is no doubt that similar thoughts have occurred 
to the founders of the theory, and to everyone who has seriously worked with 
it; the absence of a monographic exposition is one of the symptoms. 

Nevertheless, this period has already lasted twenty years; papers whose 
main results cannot even be stated in the old language are multiplying; the 
need for a textbook is growing. We therefore present this book to the benev
olent judgment of the reader. 

3 

The plan of the book evolved gradually over several years when the authors 
were running seminars in the Mathematics Department of Moscow Univer
sity, and were in contact with members of the "Homological Algebra Fan 
Club". A.A. Beilinson, M.M. Kapranov, V.V. Schechtman, whose papers and 
explanations provided us with live examples of thinking in complexes. 

J.-P. Serre, J.N. Bernstein and M.M. Kapranov have read the manuscript 
and made a series of very useful comments. 
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V.E. Govorov very kindly to provided us with an extensive card index of 
works on homological algebra. 

We are gra;teful to all them, and also to V.A. Ginzburg, R. MacPherson, 
S.M. Khoroshkin and B.L. Tsygan. 

Our debt to the founding fathers of the subject, whose books, papers and 
ideas we have used and have been inspired by, should be obvious from the 
contents. 

Moscow, 1988 S.I. Gelfand, Yu.I. Manin 
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1. General References. Five main sources for the classical homological al
gebra are books by Cartan - Eilenberg [1], MacLane [1], Hilton - Stammbach 
[1], Bourbaki [1] and the large paper by Grothendieck [1]. Simplicial methods 
are presented in Gabriel - Zisman [1] and in May [1], sheaves in Godement 
[1], Bredon [1], Golovin [1], Iversen [1]. Topoi are discussed, in particular, in 
Goldblatt [1] and Johnstone [1]. Among the books on cohomology of various 
algebraic structures we mention Brown [1], Serre [8], Guichardet [1], Fukchs 
[2]. A large list of books on algebraic topology contains, among others, Eilen
berg - Steenrod [1], Hilton - Wiley [1], Spanier [1], Dold [1], Massey [2], 
Boardman - Vogt [1], Fukchs [1], Dubrovin - Novikov - Fomenko [1], Bott -
Tu [1]. 

Modern algebraic geometry is an ample source of homological algebra of 
various kind. Here we must mention the pioneering paper by Serre [3] and the 
publications of Grothendieck and his school: Grothendieck - Dieudonne [1] 
(especially Chaps. 0 and III) and [2], Grothendieck et al. [SGA] (especially 
4, 4 1/2, 6), Artin [1], Hartshorne [1], Berthelot [1], Deligne [1], [2]. Among 
several textbooks on this subject we mention Hartshorne [2] and Milne [1]. 

The history of the homological algebra has yet to be written; we can 
recommend to the interested reader the paper by Grey [1], the corresponding 
parts from Dieudonne [1] and reminiscences of Grothendieck [5]. 

2. Topics We Have Not Considered in the Book. 

a) Noncommutative cohomology. Some problems in group theory and topol
ogy lead to cohomology with non-commutative coefficients. A systematic the
ory exists only in low dimensions (::; 2 or ::; 3). An excellent exposition for 
the case of group cohomology based on the paper by Dedecker [1] is Serre [7]. 
Most commonly used is 1-cohomology, or torsors. About intermediate "state 
of the art" see Giraud [1]. 

b) Derivatives of non-additive functors. First constructions of derivatives of 
non-additive functors, such as the symmetric or the exterior power of a mod
ule, were suggested by Dold - Puppe [1]. Their technique was developed 
further by Illusie [1] who applied such functors in certain algebraic geom
etry situations. Crucial in the construction of these functors are simplicial 
methods. In Feigin - Tsygan [1], [2] the additive K-theory is interpreted as 
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the derivation of the functor that associates to each ring its quotient by the 
commutant. 

c) Continuous cohomology. Functional analysis and infinite-dimensional ge
ometry produce some cohomology-like construction in various categories of 
algebraic structures with topology, such as linear topological spaces, Banach 
algebras, Lie groups, etc. However, most of these categories (and the most 
important ones) are non-abelian, and the standard technique does not work. 
Usually in definition and computations the authors exploit some specific 
classes of complexes. See Helemski [1], Guichardet [1], Borel - Wallach [1], 
Johnson [1]. 

d) Products and duality. Some odds and ends the reader can find in various 
parts of the book, but a satisfactory general theory in the framework of ho
mological algebra presumably does not exist. See [SGA 2] and Hartshorne 
[1] about the duality in algebraic geometry, Verdier [1], [2] and Iversen [1] 
about the duality in topology. The theory of DG-algebras (see Chap. V) 
can be considered as an attempt to introduce the multiplicative structure 
"from scratch". About deeper results see Boardman - Vogt [1], Shechtman [1], 
Hinich - Shechtman [1]. Classical theory of cohomological operations (Steen
rod powers, Massey operations) also can be considered from such viewpoint. 

e) Homological algebra and K -theory. The literature on K -theory is very 
ample; see the basic papers by Quillen [1], [2], [4], the review by Suslin [2], 
as well as [KTl], [KT2], where one can find further references. 

f) Miscelleneous. Applications of Galois cohomology in number theory are 
based, first of all, on class field theory; see the classical exposition in Artin -
Tate [1] and subsequent papers by Tate [1 J, Mazur [1 J, among others. There 
exists a large literature on homological methods in commutative algebra; see 
[ATT], Serre [6], Andre [2], [3], Avramov - Halperin [1], Quillen [3J. About 
some other applications of homological algebra see [AN], [ES], [SDJ. 
3. To Chapter I. Sect. 1.1-1.3: About further results of simplicial algebra, 
and, in particular, about its applications to homological algebra, see Gabriel
Zisman [IJ and May [1]; see also the remarks to Chap. V below. Its application 
to the derivation of non-additive functors see in Dold - Puppe [1] and Illusie 
[1]. Deligne extensively used symplicial methods in the theory of mixed Hodge 
structures, see Deligne [1], Beilinson [2]. About Exercises 2, 3 to Sect. 1.2 see 
Duskin [1], [2]. 

Sect. 1.4: Algebraic topology is only slightly mentioned here, see Sect. 1 
of this guide. 

Sect. 1.5: About the classical sheaf theory see Serre [3]' [4], Godement [1], 
Bredon [1], Golovin [1], Iversen [1]. For sheaftheory in general topoi, as well 
as in etale, cristalline, and other topoi of algebraic geometry see [SGA 4], 
Artin [1], Berthelot [1], Milne [1]. 

The most important development of the sheaf theory in the last ten years 
is related to the notion of a perverse sheaf and the corresponding cohomolog
ical formalism which is well suited to the study of singular varities. Perverse 
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sheaves are objects of the derived category of usual sheaves, so that a perverse 
sheaf is a complex of usual sheaves. See Goresky - MacPherson [1], Beilinson 
- Bernstein - Deligne [1], and [IR], [ES]. 

Sect. 1.6: An exact sequence is the main tool of homological algebra. See 
further development in the framework of derived and triangulated categories 
in Sect. II1.3 and IV.l. 

Sect. 1.7: There exists a large list of papers whose authors introduce and 
study important specific resolution and complexes such as de Rham, Cech, 
Koszul, Hochshild, and bar-resolutions, cyclic complexes, complexes of con
tinuous co chains , etc. See, in particular, Priddy [1], [2], Karoubi [1], [2], [3], 
Connes [1], Fukchs [2], Hochshild [1]. 

4. To Chapter II. Sect. ILl: See MacLane [1], Goldblatt [1], Faith [1]; 
about 2-categories see Gabriel - Zisman [1]. 

Sect. 11.2: About the theory of fundamental group in algebraic geometry 
see [SGA 2], about Gelfand duality see Gelfand - Shilov [1], about Morita 
equivalence see Morita [1], Faith [1]. A classical example of the non-trivial 
equivalence is the description of coherent sheaves on projective algebraic man
ifolds by corresponding modules over homogeneous coordinate ring, see Serre 
[3] and a generalization in Grothendieck - Dieudonne [1, EGA 3]. 

Further generalizations of these ideas lead to remarkable equivalences be
tween some derived categories, see Sect. IV.3. 

Sect. II.3: Several important theorems give an abstract characterization of 
representable functors. About Freyd's theorem in the general category theory 
framework see MacLane [2]. A lot of important spaces (like moduli spaces, 
i.e. bases of universal deformations) in algebraic and analytic geometry are 
introduced using the notion of a representable functor. In this context the 
characterization of representable functors by a short list of easily verified 
properties leads to some fundamental existence theorems, see Grothendieck 
[1], [2], [4], Artin [1], Knutson [1]. 

The fundamental notion of the adjoint functor was introduced by Kan 
[1]. Several important constructions in algebra, geometry, and topology can 
be described using this notion, see examples in Andre [1], Faith [1], MacLane 
[2]. 

Sect. II.4: For details about ringed spaces see Grothendieck - Dieudonne 
[1, Chap. 0]' [2]. For the nerve of a category see Quillen [4], Suslin [1]. For 
quadratic algebras (Ex. 5) see Manin [1]. 

Sect. II.5-II.6: This is a classical part of the theory of abelian categories, 
see Cartan - Eilenberg [1], MacLane [1], [2], Grothendieck [1]. For the de
velopment of these ideas in the context of derived categories see Sect. II1.6, 
IV.l. About ex. 1-7 in Sect. II.5 see MacLane [2]. About ex. 9 in Sect. II.5 
see Serre [2]. 

5. To Chapter III. Sect. IILl-III.4: See Hartshorne [1], Verdier [3]. The 
fundamental diagram in Lemma III.3.3 is taken from Bourbaki [1]. 
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It seems that the main deficiency of the definition of a derived category is 
in the bad definition of distinguished triangles. The problem of what should 
be a good definition is discussed in unpublished notes of Deligne. See also the 
discussion about the functor det in Knudsen - Mumford [1], and in [SGA 6] 
and the definition of Tot in Exercises to IV.2. 

Sect. IlI.S: The classical theory of the functors Ext in terms of complexes 
is due to Yoneda [1] (it generalizes the Baer's theory of Ext!). Homological 
dimension was studied in algebraic geometry (Serre [4]), in depth theory 
([SHA 2]), in group theory (Brown [1] and several papers in [HG]). 

About theorem IlI.S.21 see Hartshorne [1]. This theorem can be consid
ered as one of the theorems establishing the equivalence between a derived 
category and a category of complexes modulo homotopic equivalence, see 
Beilinson [1], Bernstein - Gelfand - Gelfand [1], Kapranov [1], [2], [3]. For 
results related to ex. 4 see Happel [1]. 

Sect. IlI.6: The main references here are the same as in Sects. IlI.I-IlI.4. 
For ex. I-S see Deligne's paper in Grothendieck et al. [SGA 4, XVII], for ex. 
6 see Roos [1], [2], about ex. 7-10 see Spaltenstein [1]. 

Sect. III.7: While an exact sequence can be considered as the main tool in 
the study of cohomology dependence on the abelian variable, a spectral se
quence plays a similar role in the study of the dependence on the non-abelian 
variable. The first spectral sequence was introduced, presumably, by Leray 
[1]; the classical exposition of Serre [1] remains an excellent introduction into 
the subject. The standard construction of the spectral sequence associated to 
a filtered complex is given in Cartan - Eilenberg [1], and the one associated 
to an exact couple is given in Massey [1] (see also Eckmann - Hilton [1], [2]). 
Grothendieck [1] showed that some standard spectral sequences relate derived 
functors of the composition to the derived functors of factors. However, spec
tral sequences in homotopic topology are of different nature, see McCleary 
[1]. Fukchs [1] gives a fascinating description of the Adams spectral sequence. 
See also exercises to IV.2. 

Sect. IlI.S: This section, together with exercises to it and to IV.4, presents 
sheaf cohomology theory, as it is seen nowadays. The main difference from 
the status fixed in Godement [1] is the appearence of the functor 1', which 
can be defined only using derived categories. This functor leads to the Verdier 
duality, which also can be formulated only in derived categories, and to the 
"six functors" formalism (see exercises to IV.4). References are Verdier [1], 
[2], [4], the volume [IR], Iversen [1]. The parallel theory in algebraic geometry 
is presented in Hartshorne [1] for coherent sheaves and in [SGA 4] (especially 
XVII) for etale topology. 

6. To Chapter IV. Sect. IV.I-IV.2: The main sources for us were Verdier 
[3], Hartshorne [2] and Kapranov [3]. See also Happel [1], Iversen [1]. Exercises 
to Sect. IV.2 were composed by Kapranov. 

Sect. IV.3: The description of derived categories of coherent sheaves on 
on projective spaces was initiated in Beilinson [1] and Bernstein - Gelfand-
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Gelfand [1]. A series of consecutive generalizations of this theory was found 
by Kapranov [1], [2], [3]; see also Meltzer [1]. The "S-A duality"described in 
this section possesses far reaching generalizations, see Priddy 1], [2], Lofwall 
[1], Happel [1], Gorodentsev - Rudakov [1]. 

Sect. IV.4: We present here some ideas from Beilinson - Bernstein -
Deligne [1]. The main application of this theory, that is, the construction of 
perverse sheaves, is not discussed in this book. About ex. 1-5 see Beilinson 
- Bernstein - Deligne [1], about ex. 6 see Bernstein - Gelfand - Ponomarev 
[1], Brenner - Butler [1], about ex. 7 see Happel [1]. 

7. To Chapter V. In this chapter we study homotopic algebra (algebraic 
foundations of homotopy theory), which much less developed than homolog
ical algebra. 

Sect. V.I-V.2: Here we introduce the main axiomatic notion that of a 
closed model category (Quillen [1]), which axiomatizes the main homotopic 
properties of topological spaces. Since we view simplicial sets as a bridge 
between topology and algebra, we give a (rather lengthy) proof that simplicial 
sets form a closed model category. We hope that these two sections will help 
an interested reader to study deeper parts of the book by Quillen [1], as 
well as further literature: Quillen [2], [4], May [1], Bousfield - Gugenheim [1], 
Tanre [1]. 

Sect. V.3-V.4: The second part of this chapter introduces to the reader 
some ideas of the famous paper by Sullivan [1] where he shows that the 
rational homotopic type of a manifold can be determined by its algebra of 
differential forms. 

We prove that differential graded algebras form a closed model category 
and study minimal models in this category. 

Exercises to these sections are based, mainly, on results from Tanre [1]. 
Sect. V.5: Here we present (without proofs) main results of the theory 

of rational homotopic type. The proofs, together with further details and 
references, can be found in Lemann [1], Bousfield - Gugenheim [1], Deligne 
- Griffiths - Morgan - Sullivan [1], Morgan [1], Halperin [1], Avramov -
Halperin [1], Tanre [1]. 
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