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Translator's Preface 

This book combines material from two sources: Analyse de Fourier et ap
plications: Filtrage, Calcul numerique, Ondelettes by Claude Gasquet and 
Patrick Witomski (Masson, Paris, second printing, 1995) and Analyse de 
Fourier et applications: Exercices corriges by Robert Delmasso and Patrick 
Witomski (Masson, Paris, 1996). The translation of the first book forms 
the core of this Springer edition; to this have been added ail of the exercises 
from the second book. The exercises appear at the end of the lessons to 
which they apply. The solutions to the exercises were not includcd bccause 
of space constraints. 

Whcn Springer offered me the opportunity to translate the book by Gas
quet and Witomski, I readily acccpted bccause I liked both the book's 
content and its style. I particularly liked the structure in 42 lessons and 
12 chapters, and I agree with the authors that each lesson is a "chew
able piece," which can be assimilated relatively easily. Believing that the 
structure is important, I have maintained as much as possible the "look and 
feel" of the original French book, including the page format and numbering 
system. I believe that this page structure facilitates study, understanding, 
and assimilation. With regard to content, again I agree with the authors: 
Mathematics students who have worked through the material will be weil 
preparcd to pursue work in many directions and to explore the proofs of 
results that have been assumed, such as the development of measure theory 
and the representation theorems for distributions. Physics and engineering 
students, who perhaps have a different outlook and motivation, will be weil 
equipped to manipulate Fourier transforms and distributions correctly and 
to apply correctly results such as the Poisson summation formula. 

Translating is perhaps the closest scrutiny a book receives. The process 
of working through the mathematics and checking in-text referenccs always 
uncovers typos, and a number of these have been corrected. On the other 
hand, I have surely introduced a few. I have also added material: I have 
occasionaily added details to a proof wherc I felt a few more words of 
explanation wcre appropriate. In the case of Proposition 31.1.3 (which is 
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a key result), Exercise 31.12 was added to complctc thc proof. I havc also 
completed the proofs in Lesson 42 and added some comments. Sevcral new 
referenccs on wavelets have been included in thc bibliography, a few of 
thcm with annotations. All of these modifications have bcen madc with 
the knowledge and concurrence of Patrick Witomski. 

Although the book was written as a textbook, it is also a useful refcrence 
book for theorctical and practical results on Fourier transforms and distri
butions. Therc arc several places where the Fourier transforms of specific 
functions and distributions are summarized, and therc are also summaries 
of general results. These summaries havc been indexed for easy refcrence. 

The French edition was typeset in Plain TEX and printed by Louis-Jean 
in Gap, France. Monsieur Albert at Louis-Jean kindly sent me a copy of 
the TEX source for the French cdition, thus allowing many of the equations 
and arrays to bc copied. This simplified the typcsetting and helped to avoid 
introducing errors. My sincere thanks to M. Albert. Similarly, thanks go 
to Anastis Antoniadis (IMAG, Grenoble) for providing the lb-TEX sourcc 
for the cxercises, which was clegantly prcpared by his wife. I had the good 
fortune to have had the work edited by David Kramcr, a mathcmatician 
and freclance editor. He not only did a masterful job of straightening out 
the punctuation and othcr language-based lapses, but he also added many 
typesetting suggestions, which, I believe, manifestly improved the appear
ance of the book. I also thank David for catching a few of the typos that I 
introduced; those that remain are my responsibility and embarrassmcnt. 

Robcrt Ryan 
Paris, July 14, 1998 



Preface to the French Edition 

This is a book of applied mathematics whose main topics are Fourier anal
ysis, filtering, and signal processing. 

The development proceeds from the mathematics to its applications, 
whilc trying to make a connection betwecn the two perspectives. On one 
hand, specialists in signal processing constantly use mathematical concepts, 
often formally and with considerable intuition based on experience. On the 
other hand, mathematicians place more priority on the rigorous develop
ment of the mathcmatical conccpts and tools. 

Our objective is to give mathematics students somc understanding of 
the uses of the fundamental notions of analysis they are learning and to 
providc thc physicists and engineers with a theoretical framework in which 
the "wcll known" formulas are justified. 

With this in mind, the book presents a development of the fundamentals 
of analysis, numerical computation, and modeling at levels that extend 
from the junior year through the first year of graduate school. One aim is 
to stimulate students' interest in the coherence among the following three 
domains: 

• Fourier analysis; 
• signal processing; 
• numerical computation. 

On completion, students will have a general background that allows them 
to pursuc more spccialized work in many directions. 

The general concept 

We have chosen a modular presentation in lessons of an average size that 
can be easily assimilated . . . or passed ovcr. The density and the level of 
thc material vary from lesson to lesson. Wc havc purposefully modulated 
thc pacc and thc concentration of the book, since as lecturers know, this 
is necessary to capture and maintain the attention of their audience. Each 
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lesson is devoted to a specific topic, which facilitates reading "a la carte." 
The lessons are grouped into twelve chapters in a way that allows one to 
navigate easily within the book. 

A progressive approach 

The program we have adopted is progressive; it is written on levels that 
range from the third year of college through the first year of graduate 
school. 

JUNIOR LEVEL 

Lessons 1 through 7 are accessible to third-year students. They intro
duce, at a practical level, Fourier series and the basic ideas of filtering. 
Here one finds some simple examples that will be re-examined and studied 
in more depth later in the book. The Lebesgue integral is introduced for 
convenience, but in superficial way. On the other hand, emphasis is placed 
on the geometric aspects of mean quadratic approximation, in contrast to 
the point of view of pointwise representation. The notion of frequency is 
illustrated in Lesson 7 using musical scales. 

SENIOR LEVEL 

The reader will find a presentation and overview of the Lebesgue integral 
in Chapter IV, where the objective is to master the practical use of the 
integral. The lesson on measure theory has been simplified. This chapter, 
howcver, serves as a good guide for a morc thorough study of measure and 
integration. Chapter VI contains concentrated applications of integration 
techniques that lead to the Fourier transform and convolution of functions. 
One can also include at this level the algorithmic aspects of the discrete 
Fourier transform via the fast Fourier transform (Chapter III), thc concepts 
of filtcring and linear differential equations (Chapter VII), an easy version 
of Shannon's theorem, and an introduction to distributions (Chapter VIII). 

MASTER LEVEL 

According to our experience, the rest of the book, which is a good half 
of it, demands more maturity. Herc one finds precisc results about thc 
fundamental relation -r;g = j · g, the Young inequalities (Chaptcr VI), 
and various aspects of Poisson's formula related to sampling (Chapter XI). 
Finally, time-frequency analysis based on Gabor's transform and wavelet 
analysis ( Chapter XII) call upon all of the tools developed in the first cleven 
chapters and lead to recent applications in signal processing. 

The content of this book is not claimed to be exhaustive. We have, for 
example, simply treated the z-transform without speaking of the Laplace 
transform. We chose not to deal with signals of several variables in spite of 
the fact that they are clcarly important for image processing. 
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Possible uses of time 

This book is an extension of a course given for engineering students during 
their second year at E.N.S.I.M.A.G. 1 and at I.U.P.2 • Wehave been con
fronted, as are all teachers, with dass schedules that constrain the time 
available for instruction. The 40 hours available to us per semester at 
E.N.S.I.M.A.G. or at I.U.P., which is divided equally between lectures and 
work in sections, provides enough time to present the essential material. 

Nevertheless, the material is very rich and requires a certain level of 
maturity on the part of the students. We are thus led to assume in our 
lectures some of the results that are proved in the book. This is facilitated 
by the partition of the book into lessons, and it is not incompatible with a 
good mathematics education. The time thus saved is more usefully invested 
in practicing proofs and the use of the available tools. The material is 
written at a level that leads to a facility in manipulating distributions, to a 
rigorous formulation of the fundamental formula r;g = f * g und er various 
assumptions, to an exploration of the formulas of Poisson and Shannon, and 
finally, to precise ideas about the wavelet decomposition of a signal. 

Our presentation contrasts with those that simply introduce certain for
mulas such as 

/_:oo e-2i7r(A-a) dt = 8(>.- a) 

out ofthin air, where one ignores all of the fundamental background for a 
very short-term advantage. 

Different possible courses 

One can work through the book linearly, or it is possible to enter at other 
places as suggested below: 

Juniors 
Chapters I, II, and III. 

Seniors and Masters in Mathematics 
Chapters IV, V, VI, VIII, and IX. 

Seniors and Masters in Physics 
Chapters VII, X, XI, and XII. 

This book comes from many years of teaching students at E.N.S.I.M.A.G. 
and I.U.P. and pre-doctoral students. In fact, it was for pre-doctoral instruc
tion that a course in applied mathematics oriented toward signal processing 

1 Ecole Nationale Superieure d'Informatique et de Mathematiques Appliquees de 
Grenoble (Institut National Polytechnique de Grenoble) 

2 Institut Universitaire Professionnalise de Mathematiques Appliquees et Industrielles 
(Universite Joseph Fourier Grenoble I) 
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was established by Raoul Robert. His initiative in this subject, which was 
not his area of research, has played a decisive role, and the current cxplo
sion of numerical work based on wavelets shows that hisvisionwas correct. 
Our thanks go equally to Pierrc Baras for thc numerous animated discus
sions we have had. Their ideas and comments have been a valuable aid and 
irreplaceable inspiration for us. 

The sccond printing of this book is an opportunity to make several rc
marks. We have chosen not to include any new developments. We havc 
listed at the end of the book several references on wavelets, which show 
that this area has exploded during these last years. But for the student or 
the teacher to whom we address the book, the path to follow remains the 
same, and the basics must be even more solidly established to understand 
these new areas of applications. It seems to us that our original objective 
continues to be appropriate today. 

We have made the necessary corrections to the original text, and a book 
of exercises with solutions will soon be available to complete the project. 

Claude Gasquet 
Patrick Witomski 
Grenoble, June 30, 1994 
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