R.V. Gamkrelidze (Ed.)

Geometry I

Basic Ideas and Concepts of Differential Geometry

With 62 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Basic Ideas and Concepts of Differential Geometry

D.V. Alekseevskij, A.M. Vinogradov, V.V. Lychagin

Translated from the Russian by E. Primrose

Pre	face		8
Cha	apter	1. Introduction: A Metamathematical View of	
	Diff	erential Geometry	9
§1.	Alge	ebra and Geometry – the Duality of the Intellect.	9
§2.	Two	Examples: Algebraic Geometry, Propositional Logic and	
-	Set '	Theory	11
§3.	On	the History of Geometry	14
§4.	Diff	erential Calculus and Commutative Algebra	18
§ 5.	Wha	at is Differential Geometry?	22
Cha	apter	2. The Geometry of Surfaces	25
§1.	Cur	ves in Euclidean Space	25
•	1.1.	Curves	25
	1.2.	The Natural Parametrization and the Intrinsic Geometry of	
		Curves	25
	1.3.	Curvature. The Frenet Frame.	26
	1.4.	Affine and Unimodular Properties of Curves	27
§2.	Surf	aces in E^3	28
Ū	2.1.	Surfaces. Charts	29
	2.2.	The First Quadratic Form. The Intrinsic Geometry of	
		a Surface	29
	2.3.	The Second Quadratic Form. The Extrinsic Geometry of	
		a Surface	30
	2.4.	Derivation Formulae. The First and Second Quadratic	
		Forms	32
	2.5.	The Geodesic Curvature of Curves. Geodesics	32

Con	tents
-----	-------

	2.6.	Parallel Transport of Tangent Vectors on a Surface.	
		Covariant Differentiation. Connection	33
	2.7.	Deficiencies of Loops, the "Theorema Egregium" of Gauss and	
		the Gauss-Bonnet Formula	35
	2.8.	The Link Between the First and Second Quadratic Forms.	
		The Gauss Equation and the Peterson-Mainardi-Codazzi	
		Equations	37
	2.9.	The Moving Frame Method in the Theory of Surfaces	38
	2.10	A Complete System of Invariants of a Surface	39
§ 3 .	Mu	Itidimensional Surfaces	40
0	3.1.	<i>n</i> -Dimensional Surfaces in E^{n+p}	40
	3.2.	Covariant Differentiation and the Second Ouadratic Form	41
	3.3.	Normal Connection on a Surface. The Derivation Formulae	42
	3.4.	The Multidimensional Version of the Gauss-Peterson-	
		Mainardi-Codazzi Equations. Ricci's Theorem	43
	3.5.	The Geometrical Meaning and Algebraic Properties of the	
		Curvature Tensor.	45
	3.6.	Hypersurfaces. Mean Curvatures. The Formulae of Steiner	
		and Wevl.	47
	3.7.	Rigidity of Multidimensional Surfaces.	48
Cha	apter	3. The Field Approach of Riemann.	50
§1.	Fro	m the Intrinsic Geometry of Gauss to Riemannian Geometry	50
Ū	1.1.	The Essence of Riemann's Approach	50
	1.2.	Intrinsic Description of Surfaces	51
	1.3.	The Field Point of View on Geometry	51
	1.4.	Two Examples	52
§2.	Ma	nifolds and Bundles (the Basic Concepts)	54
•	2.1.	Why Do We Need Manifolds?	54
	2.2.	Definition of a Manifold	55
	2.3.	The Category of Smooth Manifolds	57
	2.4.	Smooth Bundles	58
§ 3.	Ten	sor Fields and Differential Forms	60
-	3.1.	Tangent Vectors	60
	3.2.	The Tangent Bundle and Vector Fields.	61
	3.3.	Covectors, the Cotangent Bundle and Differential Forms of	
		the First Degree	63
	3.4.	Tensors and Tensor Fields	65
	3.5.	The Behaviour of Tensor Fields Under Maps.	
		The Lie Derivative	69
	3.6.	The Exterior Differential. The de Rham Complex	70
§4.	Rie	mannian Manifolds and Manifolds with a Linear Connection	71
	4.1.	Riemannian Metric	71
	4.2.	Construction of Riemannian Metrics	71
	4.3.	Linear Connections	72
	4.4.	Normal Coordinates	75

	4.5. A Riemannian Manifold as a Metric Space. Completeness	76
	4.6. Curvature	77
	4.7. The Algebraic Structure of the Curvature Tensor. The Ricci	
	and Weyl Tensors and Scalar Curvature.	79
	4.8. Sectional Curvature. Spaces of Constant Curvature	81
	4.9. The Holonomy Group and the de Rham Decomposition	82
	4.10. The Berger Classification of Holonomy Groups. Kähler and	
	Quaternion Manifolds	83
§5.	The Geometry of Symbols	85
	5.1. Differential Operators in Bundles	85
	5.2. Symbols of Differential Operators	86
	5.3. Connections and Quantization.	87
	5.4. Poisson Brackets and Hamiltonian Formalism	88
	5.5. Poissonian and Symplectic Structures	89
	5.6. Left-Invariant Hamiltonian Formalism on Lie Groups	89
Cha	apter 4. The Group Approach of Lie and Klein. The Geometry of	
	Transformation Groups	92
§ 1.	Symmetries in Geometry.	92
0	1.1. Symmetries and Groups	92
	1.2. Symmetry and Integrability	93
	1.3. Klein's Erlangen Programme	94
δ 2.	Homogeneous Spaces	95
0	2.1. Lie Groups	96
	2.2. The Action of the Lie Group on a Manifold.	96
	2.3. Correspondence Between Lie Groups and Lie Algebras	97
	2.4. Infinitesimal Description of Homogeneous Spaces	98
	2.5. The Isotropy Representation, Order of a Homogeneous Space	99
	2.6. The Principle of Extension. Invariant Tensor Fields on	
	Homogeneous Spaces	99
	2.7. Primitive and Imprimitive Actions.	100
§ 3.	Invariant Connections on a Homogeneous Space	101
0	3.1. A General Description.	101
	3.2. Reductive Homogeneous Spaces	102
	3.3. Affine Symmetric Spaces	104 -
§4 .	Homogeneous Riemannian Manifolds	106
0	4.1. Infinitesimal Description	106
	4.2. The Link Between Curvature and the Structure of the Group	
	of Motions	107
	4.3. Naturally Reductive Spaces	107
	4.4. Symmetric Riemannian Spaces.	108
	4.5. Holonomy Groups of Homogeneous Riemannian Manifolds.	
	Kählerian and Ouaternion Homogeneous Spaces	110
§ 5.	Homogeneous Symplectic Manifolds	111
J	5.1. Motivation and Definitions	111
	5.2. Examples	111
	r	

	5.3. Homogeneous Hamiltonian Manifolds	112	
	5.4. Homogeneous Symplectic Manifolds and Affine Actions	112	
Chapter 5. The Geometry of Differential Equations 11			
§ 1.	Elementary Geometry of a First-Order Differential Equation	114	
0	1.1. Ordinary Differential Equations	115	
	1.2. The General Case	116	
	13 Geometrical Integration	117	
.82	Contact Geometry and Lie's Theory of First-Order Equations	118	
ş 2.	21 Contact Structure on I^1	118	
	2.1. Contact structure on <i>g</i>	110	
	the Contact Structure	119	
	23 Contact Transformations	121	
	2.4. Contact Vector Fields	121	
	2.5. The Cauchy Drahlem	122	
	2.5. The Cauchy Floblen	123	
67	2.0. Symmetries. Local Equivalence	124	
g 3.	2.1 Distributions	125	
	3.1. Distributions.	120	
	3.2. A Distribution of Codimension 1. The Theorem of Darboux	128	
	3.3. Involutive Systems of Equations	130	
	3.4. The Intrinsic and Extrinsic Geometry of	101	
~ .	First-Order Differential Equations	131	
§4.	Spaces of Jets and Differential Equations	132	
	4.1. Jets	132	
	4.2. The Cartan Distribution	133	
	4.3. Lie Transformations	135	
	4.4. Intrinsic and Extrinsic Geometries.	136	
§ 5.	The Theory of Compatibility and Formal Integrability	137	
	5.1. Prolongations of Differential Equations	137	
	5.2. Formal Integrability	138	
	5.3. Symbols	138	
	5.4. The Spencer δ -Cohomology	140	
	5.5. Involutivity	141	
§6.	Cartan's Theory of Systems in Involution	142	
	6.1. Polar Systems, Characters and Genres	142	
	6.2. Involutivity and Cartan's Existence Theorems	144	
§7.	The Geometry of Infinitely Prolonged Equations	145	
Ū	7.1. What is a Differential Equation?	145	
	7.2. Infinitely Prolonged Equations	146	
	7.3. C-Maps and Higher Symmetries	147	
Ch	apter 6. Geometric Structures	149	
81	Geometric Quantities and Geometric Structures.	149	
3	1.1. What is a Geometric Quantity?	149	
	1.2. Bundles of Frames and Coframes	149	
	13 Geometric Quantities (Structures) as Equivariant Functions		
	on the Manifold of Coframes	150	

	1.4.	Examples. Infinitesimally Homogeneous Geometric Structures	
		and G-Structures	151
	1.5.	Natural Geometric Structures and the Principle of Covariance	153
§2.	Prir	cipal Bundles.	154
	2.1.	Principal Bundles.	154
	2.2.	Examples of Principal Bundles	155
	2.3.	Homomorphisms and Reductions	155
	2.4.	G-Structures as Principal Bundles	156
	2.5.	Generalized G-Structures	157
	2.6.	Associated Bundles	158
§3.	Cor	nections in Principal Bundles and Vector Bundles	159
	3.1.	Connections in a Principal Bundle.	159
	3.2.	Infinitesimal Description of Connections	161
	3.3.	Curvature and the Holonomy Group	162
	3.4.	The Holonomy Group.	162
	3.5.	Covariant Differentiation and the Structure Equations.	163
	3.6.	Connections in Associated Bundles	164
	3.7.	The Yang-Mills Equations	166
§4.	Bun	idles of Jets	167
	4.1.	Jets of Submanifolds	167
	4.2.	Jets of Sections	169
	4.3.	Jets of Maps	169
	4.4.	The Differential Group	170
	4.5.	Affine Structures.	171
	4.6.	Differential Equations and Differential Operators	171
	4.7.	Spencer Complexes	172
Cha	pter	7. The Equivalence Problem, Differential Invariants and	
	Pse	udogroups	174
§1.	The	Equivalence Problem. A General View	174
	1.1.	The Problem of Recognition (Equivalence)	174
	1.2.	The Problem of Triviality	175
	1.3.	The Equivalence Problem in Differential Geometry	176
	1.4.	Scalar and Non-Scalar Differential Invariants	177
	1.5.	Differential Invariants in Physics	177
§2.	The	General Equivalence Problem in Riemannian Geometry	178
	2.1.	Preparatory Remarks	178
	2.2.	Two-Dimensional Riemannian Manifolds	178
	2.3.	Multidimensional Riemannian Manifolds.	179
§3.	The	General Equivalence Problem for Geometric Structures.	180
	3.1.	Statement of the Problem	180
	3.2.	Flat Geometry Structures and the Problem of Triviality	181
	3.3.	Homogeneous and Non-Homogeneous Equivalence Problems	181
§4.	Diff	ferential Invariants of Geometric Structures and the Equivalence	
	Pro	blem	182
	4.1.	Differential Invariants	182

4	4.2. Calculation of Differential Invariants	183
4	4.3. The Principle of <i>n</i> Invariants	184
	4.4. Non-General Structures and Symmetries	184
§ 5. ′	The Equivalence Problem for G-Structures	185
	5.1. Three Examples	185
	5.2. Structure Functions and Prolongations	186
	5.3. Formal Integrability	188
•	5.4. G-Structures and Differential Invariants	189
§6.	Pseudogroups, Lie Equations and Their Differential Invariants	189
	6.1. Lie Pseudogroups	190
	6.2. Lie Equations	190
	6.3. Linear Lie Equations	191
	6.4. Differential Invariants of Lie Pseudogroups	192
	6.5. On the Structure of the Algebra of Differential Invariants	193
§7.	On the Structure of Lie Pseudogroups	193
	7.1. Representation of Isotropy	193
	7.2. Examples of Transitive Pseudogroups	194
	7.3. Cartan's Classification	194
	7.4. The Jordan-Hölder-Guillemin Decomposition	195
	7.5. Pseudogroups of Finite Type	195
Cha	pter 8. Global Aspects of Differential Geometry	197
§1.	The Four Vertices Theorem	197
§2.	Carathéodory's Problem About Umbilics.	198
§ 3.	Geodesics on Oval Surfaces	199
§4.	Rigidity of Oval Surfaces	200
§ 5.	Realization of 2-Dimensional Metrics of Positive Curvature	
	(A Problem of H. Weyl).	201
§6.	Non-Realizability of the Lobachevskij Plane in \mathbb{R}^3 and a Theorem	
	of N.V. Efimov	202
§7.	Isometric Embeddings in Euclidean Spaces	203
§8.	Minimal Surfaces. Plateau's Problem	206
§9.	Minimal Surfaces. Bernstein's Problem.	208
§ 10.	de Rham Cohomology	209
§11.	Harmonic Forms. Hodge Theory	211
§12.	Application of the Maximum Principle.	214
§13.	Curvature and Topology	216
§14.	Morse Theory.	219
§15.	Curvature and Characteristic Classes	223
	15.1. Bordisms and Stokes's Formula	223
15.2	. The Generalized Gauss-Bonnet Formula	226
15.3	. Weil's Homomorphism	227
15.4	. Characteristic Classes	228
15.5	. Characteristic Classes and the Gaussian Map	228
§16.	The Global Geometry of Elliptic Operators	229
16.1	. The Euler Characteristic as an Index	229

•

¢

.

16.2. The Chern Character and the Todd Class	30
16.3. The Atiyah-Singer Index Theorem 2	30
16.4. The Index Theorem and the Riemann-Roch-Hirzebruch	
Theorem	31
16.5. The Dolbeault Cohomology of Complex Manfiolds 2	31
16.6. The Riemann-Roch-Hirzebruch Theorem 2	33
§17. The Space of Geometric Structures and Deformations 2	34
17.1. The Moduli Space of Geometric Structures	34
17.2. Examples	35
17.3. Deformation and Supersymmetries	37
17.4. Lie Superalgebras 2	37
17.5. The Space of Infinitesimal Deformations of a Lie Algebra.	
Rigidity Conditions	:39
17.6. Deformations and Rigidity of Complex Structures 2	40
§18. Minkowski's Problem, Calabi's Conjecture and	
the Monge-Ampère Equations 2	41
§19. Spectral Geometry	44
Commentary on the References 2	:48
References	:49
Author Index	:57
Subject Index	:59

.

7