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Some Standard Notation 

The following notation is used in a standard way throughout. 

Rings are assumed commutative and without divisors of 0, unless otherwise 
specified. 

P 

p(K) 

R*, K* 
Ka 

K(P) 

R(a) 

ZeN) 
A(P) 

Am 
[nJ 

V(K) 

D '" D' 

D~D' 

Div(V) 

DiviV) 

Divl(V) 

group of all roots of unity. 

subgroup of roots of unity in a field K. 

invertible elements in a ring R (resp. in a field K). 

algebraic c10sure of a field K. 

field obtained by adjoining to K a set of affine coordinates for 
a point P (equal to K(xO/xi , ••• ,xn/xi) if (xo, ... ,xn) are 
projective coordinates for P). 

R/a for any ideal a. 

Z/NZ. 
p-primary part of an abelian group A (that is, the subgroup of 
elements whose order is apower of p). 

subgroup of elements x in an abelian group A such that mx = O. 

multiplication by an integer n on an abelian group. 

set of K-valued points of a variety or scheme V. 

for divisors D, D', linear equivalence. 

for divisors D, D', algebraic equivalence. 

group of divisors on a variety V. 

subgroup of divisors algebraically equivalent to O. 

subgroup of divisors linearly equivalent to O. 



xviii 

Pic(V) 

Pico (V) 

NS(V) 

h '" h' 
h ';::; h' 

h 4, h' 

h ~4, h' 

Div(V)/DivlV). 

Div i V)/Divl V). 

Some Standard Notation 

Div(V)/Diva(V) (the Neron-Severi group of V). 

equivalence for functions, I h - h' I is bounded. 

quasi-equivalence for functions: for each B > 0, 

- Cl + (1 - B)h ~ h' ~ (1 + B)h + C2 • 

for functions, with h' positive, there exists a constant C > ° 
such that I h I ~ Ch'. Same as h = O(h'). 

both h, h' positive, h 4, h' and h' 4, h. 

UsuaIly h, H denote heights with h = log H. These are indexed to specify 
qualifications: 

height determined by a morphism qJ into projective space. 

height relative to a field K. 

height determined by a morphism derived from the linear 
system 2'(X), weIl defined up to 0(1). 

on an arbitrary variety, the height associated with a divisor 
dass c, determined only up to 0(1); on an abelian variety, the 
canonical height. 

canonical height if one needs to distinguish it from an equiva
lence dass of heights. 

Standard references: 

lAG = I ntroduction to Algebraic Geometry [L 2]. 

A V = Abelian Varieties [L 3]. 

Weil's Foundations is still quoted in canonical style, F2-Xy , Theorem Z, 
wh ich refers to the second edition. 

For schemes, see Hartshorne's Algebraic Geometry, and also Mumford's 
Abelian Varieties. 




