Serge Lang

Fundamentals of Diophantine Geometry

Serge Lang Department of Mathematics Yale University New Haven, CT 06520 U.S.A.

AMS Subject Classifications: 10B99, 14GXX

Library of Congress Cataloging in Publication Data Lang, Serge, 1927– Fundamentals of diophantine geometry. 1. Diophantine analysis. 2. Geometry, Algebraic. I. Title. QA242.L235 1983 512'.74 83-361

An earlier version of this book, *Diophantine Geometry*, was published by Wiley-Interscience.

ISBN 978-1-4419-2818-4 ISBN 978-1-4757-1810-2 (eBook) DOI 10.1007/978-1-4757-1810-2

Published in 1983 by Springer Science+Business Media New York Originally published by Springer-Verlag New York Inc in 1983. Softcover reprint of the hardcover 1st edition 1983

Typeset by Composition House Ltd., Salisbury, England.

987654321

Contents

A So	cknowledgment															xv xvii
CI A	HAPTER 1 bsolute Values				•	•							•			1
	Definitions, dependence and independence Completions															1 5
3.	Unramified extensions															9 12
Pr D	HAPTER 2 oper Sets of Absolute Values. ivisors and Units															18
	Proper sets of absolute values															18 19
3.	Divisors on varieties									•						21 24
5.	M_{K} -divisors and divisor classes Ideal classes and units in number fields .				•											29 32
7.	Relative units and divisor classes	•				•										41 44
	IAPTER 3															
	eights	•	•		•	•	•							•	•	50
	Definitions															50 54
3.	Heights in function fields	•	•			•		•	•	•	:	•	•	•		62

Contents

	Heights on abelian groups	
	IAPTER 4 eometric Properties of Heights	. 76
1.	Functorial properties	. 76
2.	Heights and linear systems	. 83
	Ample linear systems	
4. 5.	Projections on curves	. 90 . 91
	HAPTER 5 eights on Abelian Varieties	. 95
1.	Some linear and quasi-linear algebra.	. 95
	Quadraticity of endomorphisms on divisor classes	
	Quadraticity of the height	
	Heights and Poincaré divisors	
	Jacobian varieties and curves	
	Definiteness properties Over number fields	
	Non-degenerate heights and Euclidean spaces	
	HAPTER 6 ne Mordell-Weil Theorem	. 138
	Kummer theory	
	The weak Mordell–Weil theorem	
	The infinite descent	
	Points of bounded height	
	Theorem of the base	
-	IAPTER 7 he Thue-Siegel-Roth Theorem	. 158
1	. Statement of the theorem	. 158
	. Reduction to simultaneous approximations	. 163
	. Basic steps of the proof	. 165
	. A combinatorial lemma.	. 170
	Proof of Proposition 3.1	
	Wronskians.	
	Factorization of a polynomial	. 175
	The index	. 178
	. Proof of Proposition 3.2	. 181 . 183
10		. 103

CHAPTER 8													
Siegel's Theorem and Integral Points			•				•	•		•			188
1. Height of integral points													189
2. Finiteness theorems													192
3. The curve $ax + by = 1$											• 1		194
4. The Thue–Siegel curve										•	•		196
5. Curves of genus 0	•••	٠	·	·	·	·	٠	•	•	·	·	·	197
6. Torsion points on curves.										•	•	٠	200
7. Division points on curves	•••	·	·	·	·	·	•	·	·	·	·	•	205
8. Non-abelian Kummer theory	•••	•	•	•	•	•	•	•	•	•	•	·	212
CHAPTER 9													
Hilbert's Irreducibility Theorem													225
1. Irreducibility and integral points													226
2. Irreducibility Over the rational numbers													229
3. Reduction steps													233
4. Function fields													236
 Abstract definition of Hilbert sets													239 242
6. Applications to commutative group varieties	•••	•	•	•	•	·	•	•	•	•	•	•	242
CHAPTER 10 Weil Functions and Néron Divisors											•		247
1. Bounded sets and functions													247
2. Néron divisors and Weil functions													252
3. Positive divisors													258
4. The associated height function													263
CHAPTER 11													
Néron Functions on Abelian Varieties			•										266
1. Existence of Néron functions			_	_									266
2. Translation properties of Néron functions													271
3. Néron functions on varieties													276
4. Reciprocity laws													283
5. Néron functions as intersection multiplicities													286
6. The Néron symbol and group extensions	•	•	·	•	•	•	•	•	•	•	•	•	290
CHAPTER 12 Algebraic Familias of Náron Functions													201
Algebraic Families of Néron Functions	·	·	•	·	•	·	•	·	·	•	·	·	296
1. Variation of Néron functions in an algebraic fam	-		•	•	•	•	•	·	•	•	•	•	297

variation of iveron functions in an algebraic family	•	•	•	•	•	•	•	•	•	•	•	2)1
Silverman's height and specialization theorems												303
Néron heights as intersection multiplicities												307
Fibral divisors												314
The height determined by a section: Tate's theorem		•	•		•	•	•	•				320
	Silverman's height and specialization theorems Néron heights as intersection multiplicities Fibral divisors	Silverman's height and specialization theorems Néron heights as intersection multiplicities Fibral divisors	Silverman's height and specialization theorems Néron heights as intersection multiplicities Fibral divisors	Silverman's height and specialization theorems Néron heights as intersection multiplicities	Silverman's height and specialization theorems Néron heights as intersection multiplicities	Silverman's height and specialization theorems						

CHAPTER	13
CHAILER	15

Néron Functions Over the Complex Numbers	•••	324
1. The Néron function of an abelian variety		
2. The scalar product of differentials of first kind		
3. The canonical 2-form and the Riemann theta function	•••	332
4. The divisor of the Riemann theta function		334
5. Green, Néron, and theta functions		339
6. The law of interchange of argument and parameter		
7. Differentials of third kind and Green's function		344
Appendix		349
Bibliography		359
Index		367

Acknowledgment

I thank Michel Laurent and Michel Waldschmidt for useful comments. I am especially indebted to Joe Silverman for his thorough going over of the manuscript and a long list of valuable suggestions and corrections. I am also indebted to Silverman and Tate for their manuscripts which formed the basis for the next to last chapter.

Some Standard Notation

The following notation is used in a standard way throughout.

Rings are assumed commutative and without divisors of 0, unless otherwise specified.

μ	group of all roots of unity.
μ(<i>K</i>)	subgroup of roots of unity in a field K.
R*, K*	invertible elements in a ring R (resp. in a field K).
K ^a	algebraic closure of a field K.
<i>K</i> (<i>P</i>)	field obtained by adjoining to K a set of affine coordinates for a point P (equal to $K(x_0/x_i, \ldots, x_n/x_i)$ if (x_0, \ldots, x_n) are projective coordinates for P).
$R(\mathfrak{a})$	R/a for any ideal a.
$\mathbf{Z}(N)$	Z /N Z .
$A^{(p)}$	<i>p</i> -primary part of an abelian group A (that is, the subgroup of elements whose order is a power of p).
A_m	subgroup of elements x in an abelian group A such that $mx = 0$.
[<i>n</i>]	multiplication by an integer n on an abelian group.
V(K)	set of K -valued points of a variety or scheme V .
$D \sim D'$	for divisors D, D', linear equivalence.
$D \approx D'$	for divisors D, D', algebraic equivalence.
Div(V)	group of divisors on a variety V.
$\operatorname{Div}_{a}(V)$	subgroup of divisors algebraically equivalent to 0.
$\operatorname{Div}_l(V)$	subgroup of divisors linearly equivalent to 0.

	٠	٠	٠
ΧV	1	1	1

$\operatorname{Pic}(V)$	$\operatorname{Div}(V)/\operatorname{Div}_{l}(V).$
$\operatorname{Pic}_0(V)$	$\operatorname{Div}_{a}(V)/\operatorname{Div}_{l}(V).$
NS(V)	$Div(V)/Div_a(V)$ (the Néron-Severi group of V).
$h \sim h'$	equivalence for functions, $ h - h' $ is bounded.
$h \approx h'$	quasi-equivalence for functions: for each $\varepsilon > 0$,
	$-C_1 + (1 - \varepsilon)h \leq h' \leq (1 + \varepsilon)h + C_2.$
$h \ll h'$	for functions, with h' positive, there exists a constant $C > 0$ such that $ h \leq Ch'$. Same as $h = O(h')$.
$h \gg \ll h'$	both h , h' positive, $h \ll h'$ and $h' \ll h$.

Usually h, H denote heights with $h = \log H$. These are indexed to specify qualifications:

h_{φ}	height determined by a morphism φ into projective space.
k _K	height relative to a field K.
h_X	height determined by a morphism derived from the linear system $\mathscr{L}(X)$, well defined up to $O(1)$.
h _c	on an arbitrary variety, the height associated with a divisor class c , determined only up to $O(1)$; on an abelian variety, the canonical height.
\hat{h}_{c}	canonical height if one needs to distinguish it from an equiva- lence class of heights.

Standard references:

IAG = Introduction to Algebraic Geometry [L 2].

AV = Abelian Varieties [L 3].

Weil's *Foundations* is still quoted in canonical style, F^2-X_y , Theorem Z, which refers to the second edition.

For schemes, see Hartshorne's Algebraic Geometry, and also Mumford's Abelian Varieties.