John B. Conway

Functions of One Complex Variable II

With 15 Illustrations

John B. Conway Department of Mathematics University of Tennessee Knoxville, TN 37996-1300 USA

http://www.math.utk.edu/~conway/

Editorial Board

S. Axler Department of Mathematics Michigan State University East Lansing, MI 48824

USA

F. W. Gehring Department of Mathematics

University of Michigan Ann Arbor, MI 48109

P. R. Halmos Department of Mathematics

Santa Clara University Santa Clara, CA 95053

USA

Mathematics Subjects Classifications (1991): 03-01, 31A05, 31A15

Library of Congress Cataloging-in-Publication Data Conway, John B.

Functions of one complex variable II / John B. Conway.

cm. - (Graduate texts in mathematics; 159) Includes bibliographical references (p. -) and index.

ISBN 978-1-4612-6911-3 ISBN 978-1-4612-0817-4 (eBook)

DOI 10.1007/978-1-4612-0817-4

1. Functions of complex variables. I. Title. II. Title:

Functions of one complex variable 2. III. Title: Functions of one complex variable two. IV. Series.

QA331.7.C365 1995

515'.93 - dc20

95-2331

Printed on acid-free paper.

© 1995 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc in 1995

Softcover reprint of the hardcover 1st edition 1995

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC, except for brief excerpts in connec-

tion with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Laura Carlson; manufacturing supervised by Jeffrey Taub. Photocomposed pages prepared from the author's LATEX file.

9 8 7 6 5 4 3 2 (Corrected second printing, 1996)

Contents of Volume II

Preface					
13	Ret	urn to Basics	1		
	1	Regions and Curves	1		
	2	Derivatives and Other Recollections	6		
	3	Harmonic Conjugates and Primitives	14		
	4	Analytic Arcs and the Reflection Principle	16		
	5	Boundary Values for Bounded Analytic Functions	21		
14	Con	nformal Equivalence for Simply Connected Regions	29		
	1	Elementary Properties and Examples	29		
	2	Crosscuts	33		
	3	Prime Ends	40		
	4	Impressions of a Prime End	45		
	5	Boundary Values of Riemann Maps	48		
	6	The Area Theorem	56		
	7	Disk Mappings: The Class \mathcal{S}	61		
15	Conformal Equivalence for Finitely Connected Regions 71				
	1	Analysis on a Finitely Connected Region	71		
	2	Conformal Equivalence with an Analytic Jordan Region	76		
	3	Boundary Values for a Conformal Equivalence Between Finitely	y		
		Connected Jordan Regions	81		
	4	Convergence of Univalent Functions	85		
	5	Conformal Equivalence with a Circularly Slit Annulus	90		
	6	Conformal Equivalence with a Circularly Slit Disk	97		
	7	Conformal Equivalence with a Circular Region	100		
16	Ana	alytic Covering Maps	109		
	1	Results for Abstract Covering Spaces	109		
	2	Analytic Covering Spaces	113		
	3	The Modular Function	116		
	4	Applications of the Modular Function	123		
	5	The Existence of the Universal Analytic Covering Map	125		
17	De l	Branges's Proof of the Bieberbach Conjecture	133		
	1	Subordination	133		
	2	Loewner Chains	136		
	3	Loewner's Differential Equation	142		
	4	The Milin Conjecture	148		
	5	Some Special Functions	156		
	6	The Proof of de Branges's Theorem	160		

xii Contents

18	Sor	ne Fundamental Concepts from Analysis	169
	1	Bergman Spaces of Analytic and Harmonic Functions	169
	2	Partitions of Unity	174
	3	Convolution in Euclidean Space	177
	4	Distributions	
	5	The Cauchy Transform	
	6	An Application: Rational Approximation	196
	7	Fourier Series and Cesàro Sums	198
19	Ha	rmonic Functions Redux	205
	1	Harmonic Functions on the Disk	205
	2	Fatou's Theorem	210
	3	Semicontinuous Functions	
	4	Subharmonic Functions	220
	5	The Logarithmic Potential	
	6	An Application: Approximation by Harmonic Functions	
	7	The Dirichlet Problem	
	8	Harmonic Majorants	
	9	The Green Function	
	10	Regular Points for the Dirichlet Problem	
	11	The Dirichlet Principle and Sobolev Spaces	
		The Britished Timespie and Bobbiev Spaces	200
20	Ha	rdy Spaces on the Disk	269
	1	Definitions and Elementary Properties	269
	2	The Nevanlinna Class	
	3	Factorization of Functions in the Nevanlinna Class	
	4	The Disk Algebra	286
	5	The Invariant Subspaces of H^p	
	6	Szegö's Theorem	
0.1	ъ.		
21		tential Theory in the Plane	301
	1	Harmonic Measure	
	2	The Sweep of a Measure	
	3	The Robin Constant	
	4	The Green Potential	
	5	Polar Sets	
	6	More on Regular Points	
	7	Logarithmic Capacity: Part 1	
	8	Some Applications and Examples of Logarithmic Capacity .	
	9	Removable Singularities for Functions in the Bergman Space	
	10	Logarithmic Capacity: Part 2	
	11	The Transfinite Diameter and Logarithmic Capacity	
	12	The Refinement of a Subharmonic Function	
	13	The Fine Topology	
	14	Wiener's criterion for Regular Points	376

Contents	xiii
References	384
List of Symbols	389
Index	391