Intersection
 Theory

Springer Science+Business Media, LLC

William Fulton

Intersection Theory

Second Edition

William Fulton
Department of Mathematics
University of Michigan
Ann Arbor, MI 48109-1109
USA
e-mail: fulton@math.lsa.umich.edu

Softcover Printing 1998 of the Second Edition 1998, which was originally published as Volume 2 of the series Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge.

Mathematics Subject Classification (1991): 14C17, 14-02, 14C10, 14C15, 14C25, $14 \mathrm{C} 40,14 \mathrm{E} 10,14 \mathrm{M} 12,14 \mathrm{M} 15,14 \mathrm{~N} 10,55 \mathrm{~N} 45$

Library of Congress Cataloging-in-Publication Data is on file
Printed on acid-free paper.
© 1998, 1984 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 1998
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher Springer Science+Business Media, LLC except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Bill Imbornoni; manufacturing supervised by Jacqui Ashri.

987654321

Preface to the Second Edition

We thank P. Aluffi, P. Belorousski, G. Ellingsrud, L. van Gastel, H. Gillet, B. Gross, G. Kennedy, S. Kimura, S. Kleiman, K. Kurano, K. F. Lai, F. Oort, D. Perkinson, D. Ramakrishnan, W. Raskind, N. Ring, M. Saito, C. Soulé, H. Tamvakis, A. Vistoli, W. Vogel, S. Xambó, and some anonymous critics for supplying corrections.

No attempt has been made to survey the many developments in intersection theory since 1983, other than adding some references which appeared not long after first edition. A few indications to more recent literature, as well as an informal introduction to the main ideas of this book, can be found in the 1996 edition of the author's Introduction to Intersection Theory in Algebraic Geometry, CBMS 57, Amer. Math. Soc., 1984, 1996.

Preface to the First Edition

From the ancient origins of algebraic geometry in the solution of polynomial equations, through the triumphs of algebraic geometry during the last two centuries, intersection theory has played a central role. Since its role in foundational crises has been no less prominent, the lack of a complete modern treatise on intersection theory has been something of an embarrassment. The aim of this book is to develop the foundations of intersection theory, and to indicate the range of classical and modern applications. Although a comprehensive history of this vast subject is not attempted, we have tried to point out some of the striking early appearances of the ideas of intersection theory.

Recent improvements in our understanding not only yield a stronger and more useful theory than previously available, but also make it possible to develop the subject from the beginning with fewer prerequisites from algebra and algebraic geometry. It is hoped that the basic text can be read by one equipped with a first course in algebraic geometry, with occasional use of the two appendices. Some of the examples, and a few of the later sections, require more specialized knowledge. The text is designed so that one who understands the constructions and grants the main theorems of the first six chapters can read other chapters separately. Frequent parenthetical references to previous sections are included for such readers. The summaries which begin each chapter should facilitate use as a reference.

Several theorems are new or stronger than those which have appeared before, and some proofs are significantly simpler. Among the former are a new blow-up formula, a stronger residual intersection formula, and the removal of a projective hypotheses from intersection theory and Riemann-Roch theorems; the latter includes the proof of the Grothendieck-Riemann-Roch theorem. Some formulas from classical enumerative geometry receive a first modern or rigorous proof here.

Acknowledgements. The intersection theory described here was developed together with R. MacPherson. The author whose name appears on the cover is responsible for the presentation of details, and many of the applications and examples, but the extent to which it forms a coherent theory derives from collaboration with MacPherson. Previously unpublished results of R. Lazarsfeld, and joint work with Lazarsfeld, and with H. Gillet, is also included. During the course of the work, many helpful suggestions were made by A. Collino, P. Deligne, S. Diaz, J. Harris, B. Iversen, S. L. Kleiman, A. Landman, Lazarsfeld, and J-P. Serre. Although other contributions and historical precedents are acknowledged in the text, many others, such as those of students and others who have responded to talks on these subjects, must be silently, but gratefully, cited.

This undertaking was made possible by the support of several foundations and institutions. The Guggenheim Foundation provided a fellowship in 1980-81, the Sloan Foundation provided support in 1981-82, and grants have been received from the National Science Foundation during six years of research and writing on this subject. The support and hospitality of several institutions and their staffs has been equally vital: Mathematisk Institut of the University of Århus, Denmark (1976-77); Institute des Hautes Études Scientifiques, Bures-sur-Yvette, France (1981); Institute for Advanced Study, Princeton (1981-82); and Brown University. A summer course in Cortona, Italy in 1980 provided a chance to test a preliminary version of the first portion of the book. Thanks are due to the staffs at the IAS and Brown, especially to K. Jacques, for expert typing, and to the publishers for their cooperation.

Contents

Introduction 1
Chapter 1. Rational Equivalence 6
Summary 6
1.1 Notation and Conventions 6
1.2 Orders of Zeros and Poles 8
1.3 Cycles and Rational Equivalence 10
1.4 Push-forward of Cycles 11
1.5 Cycles of Subschemes 15
1.6 Alternate Definition of Rational Equivalence 15
1.7 Flat Pull-back of Cycles 18
1.8 An Exact Sequence 21
1.9 Affine Bundles 22
1.10 Exterior Products 24
Notes and References 25
Chapter 2. Divisors 28
Summary 28
2.1 Cartier Divisors and Weil Divisors 29
2.2 Line Bundles and Pseudo-divisors 31
2.3 Intersecting with Divisors 33
2.4 Commutativity of Intersection Classes 35
2.5 Chern Class of a Line Bundle 41
2.6 Gysin Map for Divisors 43
Notes and References 45
Chapter 3. Vector Bundles and Chern Classes 47
Summary 47
3.1 Segre Classes of Vector Bundles 47
3.2 Chern Classes 50
3.3 Rational Equivalence on Bundles 64
Notes and References 68
Chapter 4. Cones and Segre Classes 70
Summary 70
4.1 Segre Class of a Cone 70
4.2 Segre Class of a Subscheme 73
4.3 Multiplicity Along a Subvariety 79
4.4 Linear Systems 82
Notes and References 85
Chapter 5. Deformation to the Normal Cone 86
Summary 86
5.1 The Deformation 86
5.2 Specialization to the Normal Cone 89
Notes and References 90
Chapter 6. Intersection Products 92
Summary 92
6.1 The Basic Construction 93
6.2 Refined Gysin Homomorphisms 97
6.3 Excess Intersection Formula 102
6.4 Commutativity 106
6.5 Functoriality 108
6.6 Local Complete Intersection Morphisms 112
6.7 Monoidal Transforms 114
Notes and References 117
Chapter 7. Intersection Multiplicities 119
Summary 119
7.1 Proper Intersections 119
7.2 Criterion for Multiplicity One 126
Notes and References 127
Chapter 8. Intersections on Non-singular Varieties 130
Summary 130
8.1 Refined Intersections 130
8.2 Intersection Multiplicities 137
8.3 Intersection Ring 140
8.4 Bézout's Theorem (Classical Version) 144
Notes and References 151
Chapter 9. Excess and Residual Intersections 153
Summary 153
9.1 Equivalence of a Connected Component 153
9.2 Residual Intersection Theorem 160
9.3 Double Point Formula 165
Notes and References 171°
Contents XI
Chapter 10. Families of Algebraic Cycles 175
Summary 175
10.1 Families of Cycle Classes 176
10.2 Conservation of Number 180
10.3 Algebraic Equivalence 185
10.4 An Enumerative Problem 187
Notes and References 193
Chapter 11. Dynamic Intersections 195
Summary 195
11.1 Limits of Intersection Classes 196
11.2 Infinitesimal Intersection Classes 198
11.3 Limits and Distinguished Varieties 200
11.4 Moving Lemmas 205
Notes and References 209
Chapter 12. Positivity 210
Summary 210
12.1 Positive Vector Bundles 211
12.2 Positive Intersections 218
12.3 Refined Bézout Theorem 223
12.4 Intersection Multiplicities 227
Notes and References 234
Chapter 13. Rationality 235
Summary 235
Notes and References 241
Chapter 14. Degeneracy Loci and Grassmannians 242
Summary 242
14.1 Localized Top Chern Class 244
14.2 Gysin Formulas 247
14.3 Determinantal Formula 249
14.4 Thom-Porteous Formula 254
14.5 Schur Polynomials 263
14.6 Grassmann Bundles 266
14.7 Schubert Calculus 271
Notes and References 278
Chapter 15. Riemann-Roch for Non-singular Varieties 280
Summary 280
15.1 Preliminaries 280
15.2 Grothendieck-Riemann-Roch Theorem 286
15.3 Riemann-Roch Without Denominators 296
15.4 Blowing up Chern Classes 298
Notes and References 302
Chapter 16. Correspondences 305
Summary 305
16.1 Algebra of Correspondences 305
16.2 Irregular Fixed Points 315
Notes and References 318
Chapter 17. Bivariant Intersection Theory 319
Summary 319
17.1 Bivariant Rational Equivalence Classes 320
17.2 Operations and Properties 322
17.3 Homology and Cohomology 324
17.4 Orientations 326
17.5 Monoidal Transforms 332
17.6 Residual Intersection Theorem 333
Notes and References 337
Chapter 18. Riemann-Roch for Singular Varieties 339
Summary 339
18.1 Graph Construction 340
18.2 Riemann-Roch for Quasi-projective Schemes 348
18.3 Riemann-Roch for Algebraic Schemes 353
Notes and References 368
Chapter 19. Algebraic, Homological and Numerical Equivalence 370
Summary 370
19.1 Cycle Map 371
19.2 Algebraic and Topological Intersections 378
19.3 Equivalence on Non-singular Varieties 385
Notes and References 391
Chapter 20. Generalizations 393
Summary 393
20.1 Schemes Over a Regular Base Scheme 393
20.2 Schemes Over a Dedekind Domain 397
20.3 Specialization 398
20.4 Tor and Intersection Products 401
20.5 Higher K-theory 403
Notes and References 404
Appendix A. Algebra 406
Summary 406
A. 1 Length 406
Contents XIII
A. 2 Herbrand Quotients 407
A. 3 Order Functions 411
A. 4 Flatness 413
A. 5 Koszul Complexes 414
A. 6 Regular Sequences 416
A. 7 Depth 418
A. 8 Normal Domains 419
A. 9 Determinantal Identities 419
Notes and References 425
Appendix B. Algebraic Geometry (Glossary) 426
B. 1 Algebraic Schemes 426
B. 2 Morphisms 427
B. 3 Vector Bundles 430
B. 4 Cartier Divisors 431
B. 5 Projective Cones and Bundles 432
B. 6 Normal Cones and Blowing Up 435
B. 7 Regular Imbeddings and l.c.i. Morphisms 437
B. 8 Bundles on Imbeddable Schemes 439
B. 9 General Position 440
Bibliography 442
Notation 462
Index 464

