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Preface 

The flood of information through various computer networks such as the In
ternet characterizes the world situation in which we live. Information worlds, 
often called virtual spaces and cyberspaces, have been formed on computer 
networks. The complexity of information worlds has been increasing almost 
exponentially through the exponential growth of computer networks. Such 
nonlinearity in growth and in scope characterizes information worlds. In other 
words, the characterization of nonlinearity is the key to understanding, utiliz
ing and living with the flood of information. The characterization approach 
is by characteristic points such as peaks, pits, and passes, according to the 
Morse theory. Another approach is by singularity signs such as folds and 
cusps. Atoms and molecules are the other fundamental characterization ap
proach. Topology and geometry, including differential topology, serve as the 
framework for the characterization. Topological Modeling for Visualization is 
a textbook for those interested in this characterization, to understand what it 
is and how to do it. Understanding is the key to utilizing information worlds 
and to living with the changes in the real world. 

Writing this textbook required careful preparation by the authors. There 
are complex mathematical concepts that require designing a writing style that 
facilitates understanding and appeals to the reader. To evolve a style, we set 
as a main goal of this book the establishment of a link between the theoretical 
aspects of modern geometry and topology, on the one hand, and experimental 
computer geometry, on the other. There are many excellent books on modern 
geometry and topology (generally speaking, "theory"), and many excellent 
books on modern computer and experimental geometry. As far as we know, 
however, there is no book that bridges the gap between these two branches 
of modern science, that is, between theory and practice. We have tried to 
fill this gap. Our intention was to write a book that will be useful to both 
communities of scientists. Of course, we realize that this separation between 
theoretical science and experimental science is not clear-cut, and we use this 
language and these images only for easier description of our main idea. We 
collect in the book some basic elements of theoretical geometry and topology 
that are used today in different branches of experimental computer geometry. 
We do not give detailed proofs because of lack of space, but we give references 
that can help the reader find the proofs. The advantage of such a style is this: 



vi 

We collect in one book a short description of the most powerful theoretical 
tools, and experts in experimental science can use this material in their work. 
Certainly, as we know from our own experience, modern topological methods 
can improve the results of experimental computer geometry. On the other 
hand, experts in theoretical geometry and topology can find in our book pos
sible applications of those fields to very interesting computer experiments in 
the world of geometrical computer methods, medicine, the automobile indus
try, architecture, and so on. Many pure mathematicians will also find here 
material for development of new theoretical ideas. Each chapter consists of 
two layers: first theoretical ideas, then applications to the different branches 
of modern experimental computer geometry. We have tried to make chapters 
as independent as possible to help the reader use each chapter as an indi
vidual research tool without a complete study of other sections of the book. 
Consequently, we sometimes include in some chapters a summary of material 
from another section to recall important ideas. 

Anatoly T. Fomenko 
Tosiyasu L. Kunii 
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