Bernard Flury

A First Course in Multivariate Statistics

With 141 Figures

Bernard Flury Department of Mathematics Rawles Hall 231 Indiana University Bloomington, IN 47405 USA

Editorial Board

Geroge Casella Department of Biometrics Cornell University Ithaca, NY 14853-7801 USA Stephen Fienberg Department of Statistics Carnegie-Mellon University Pittsburgh, PA 15213-3890 USA Ingram Olkin Department of Statistics Stanford University Stanford, CA 94305 USA

Library of Congress Cataloging-in-Publication Data Flury, Bernhard, 1951– A first course in multivariate statistics / Bernard Flury. p. cm. - (Springer texts in statistics) Includes index.

 1. Multivariate analysis.
 I. Title.
 II. Series.

 QA278.F59
 1997
 519.5'35-dc21
 97-6237

Printed on acid-free paper.

© Springer Science+Business Media New York 1997

Originally published by Springer-Verlag New York, Inc in 1997.

Softcover cover reprint of the hardcover 1st edition 1997

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Victoria Evarretta; manufacturing supervised by Johanna Tschebull. Photocomposed pages prepared from the author's Plain Tex files by Bartlett Press.

98765432

ISBN 978-1-4419-3113-9 ISBN 978-1-4757-2765-4 (eBook) DOI 10.1007/978-1-4757-2765-4

Contents

Preface	vii
Software and Data Files	xv
1. Why Multivariate Statistics?	1
Exercises for Chapter 1	19
2. Joint Distribution of Several Random Variables	23
2.1. Introductory Remarks	23
2.2. Probability Density Function and Distribution Function of a	
Bivariate Random Variable	25
2.3. Marginal Distributions	38
2.4. Independence of Random Variables	47
2.5. Expected Values, Moments, Covariance, and Correlation	57
2.6. Conditional Distributions	75
2.7. Conditional Expectation and Regression	89
2.8. Mixed Discrete-Continuous Distributions and Finite Mixtures	104
2.9. Sums of Random Variables	130
2.10. Notions and Concepts of <i>p</i> -variate Distributions	140

2.11. Transformations of Random Vectors	155
3. The Multivariate Normal Distribution	171
3.1. Review of the Univariate Normal Distribution	171
3.2. Definition and Properties of the Multivariate Normal Distribution	175
3.3. Further Properties of the Multivariate Normal Distribution	186
3.4. Spherical and Elliptical Distributions	197
4. Parameter Estimation	209
4.1. Introduction	209
4.2. Plug-in Estimators	216
4.3. Maximum Likelihood Estimation	233
4.4. Maximum Likelihood Estimation with Incomplete Data	260
5. Discrimination and Classification, Round 1	279
5.1. Introduction	279
5.2. Standard Distance and the Linear Discriminant Function	280
5.3. Using the Linear Discriminant Function	302
5.4. Normal Theory Linear Discrimination	323
5.5. Error Rates	344
5.6. Linear Discriminant Functions and Conditional Means	357
6. Statistical Inference for Means	375
6.1. Introduction	375
6.2. The One-Sample T^2 -Test	377
6.3. Confidence Regions for Mean Vectors	391
6.4. The Two-Sample T^2 -test	402
6.5. Inference for Discriminant Function Coefficients	408
6.6. Union-Intersection and Likelihood Ratio Testing	418
6.7. Resampling-Based Testing	435
7. Discrimination and Classification, Round 2	453
7.1. Optimal Classification	453
7.2. Normal Theory Classification Revisited: Linear vs Quadratic	460
7.3. Canonical Discriminant Functions	485
7.4. Multivariate Analysis of Variance	509
7.5. Simple Logistic Regression	519
7.6. Multiple Logistic Regression	538

Contents	xii
8. Linear Principal Component Analysis	563
8.1. Introduction	563
8.2. Self-Consistent Approximations	568
8.3. Self-Consistent Projections and Orthogonal Least Squares	578
8.4. Properties of Linear Principal Components	592
8.5. Applications	605
8.6. Sampling Properties	617
8.7. Outlook	625
9. Normal Mixtures	639
9.1. Introduction	639
9.2. Maximum Likelihood Estimation	645
9.3. The for Normal Mixtures	656
9.4. Examples	663
9.5. Epilogue: Normal Theory Discrimination with Partially	
Classified Data	679
ppendix: Selected Results From Matrix Algebra	687
A.0. Preliminaries	687
A.1. Partitioned Matrices	687
A.2. Positive Definite Matrices	688
A.3. The Cholesky Decomposition	689
A.4. Vector and Matrix Differentiation	690
A.5. Eigenvectors and Eigenvalues	691
A.6. Spectral Decomposition of Symmetric Matrices	692
A.7. The Square Root of a Positive Definite Symmetric Matrix	693
A.8. Orthogonal Projections on Lines and Planes	695
A.9. Simultaneous Decomposition of Two Symmetric Matrices	695
Bibliography	703
ndex	711