Deterministic Global Optimization

Theory, Methods and Applications

by

Christodoulos A. Floudas

Department of Chemical Engineering, Princeton University, Princeton, New Jersey, U.S.A.

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

Library of Congress Cataloging-in-Publication Data

Floudas, Christodoulos A. Deterministic global optimization : theory, methods, and applications / by Christodoulos A. Floudas.
p. cm. -- (Nonconvex optimization and its applications ; v. 37) Includes bibliographical references and index.
ISBN 978-1-4419-4820-5 ISBN 978-1-4757-4949-6 (eBook) DOI 10.1007/978-1-4757-4949-6
1. Mathematical optimization. 2. Nonlinear programming. I. Title. II. Series.

QA402.5 .F586 1999 519.3--dc21

99-047045

ISBN 978-1-4419-4820-5

Printed on acid-free paper

All Rights Reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

Contents

Pr	eface		xiii
1.	INT	RODUCTION	1
	1.1	Motivation	1
	1.2	Structure of Global Optimization Models	3
	1.3	Illustrative Applications of Global Optimization	4
	1.4	Deterministic Global Optimization : Approaches and Classes of Problems	18
	1.5	Complexity Analysis	19
	1.6	Research Areas and Important Applications	23
	1.7	Publications and Conferences	25
	1.8	Chemical Engineering Contributions	27
	1.9	Scope of the Book	32
2.	BAS	IC CONCEPTS OF GLOBAL OPTIMIZATION	33
	2.1	Convex Sets	33
	2.2	Convex and Concave Functions	35
	2.3	Quasi-Convex and Pseudo-Convex Functions	42
	2.4	Convex Envelopes	45
	2.5	Local, Global, ϵ -Global Minima	57
	2.6	Difference of Convex (D.C.) Functions	58
Pa	rt I	Biconvex and Bilinear Problems	
3.	тне	GOP PRIMAL - RELAXED DUAL DECOMPOSITION APPROACH : THEOR	Y 67
	3.1	Problem Statement	68
	3.2	Duality Theory	70
	3.3	Mathematical Properties	73
	3.4	Infeasible Primal Problems	82
	3.5	The Global OPtimization (GOP) Algorithm	84
	3.6	Finite ϵ -Convergence and ϵ -Global Optimality	87
	3.7	Illustrative Example	90
			xiii

viii DETERMINISTIC GLOBAL OPTIMIZATION

	3.8	The GOP for Quadratic Problems with Linear Constraints	95
	3.9	The GOP for Quadratically Constrained Problems	96
	3.10	The GOP for Univariate Polynomial Problems	98
	3.11	Additional Properties of the Lagrange Function	105
	3.12	The GOP in a Branch and Bound Framework	114
	3.13	Reformulation Of The Relaxed Dual As A Single MILP Problem	126
	3.14	A Linear Branching Scheme for the GOP Algorithm	134
4.	THE	GOP APPROACH : IMPLEMENTATION AND COMPUTATIONAL STUDIE	S141
	4.1	Implementation of the GOP and GOP/MILP Algorithms	141
	4.2	Computational Studies	152
	4.3	Summary	168
5.	тне	GOP APPROACH IN BILEVEL LINEAR AND QUADRATIC PROBLEMS	173
	5.1	Introduction	173
	5.2	Bilevel linear programming problem	175
	5.3	Modified GOP Algorithm	181
	5.4	bilevel linear-quadratic and bilevel quadratic-quadratic problems	187
б.	ТНЕ	GOP APPROACH IN PHASE AND CHEMICAL EQUILIBRIUM PROBLEMS	5 193
	6.1	Introduction and Formulation of Minimizing the Gibbs Free Energy	193
	6.2	Application of the GOP to NRTL Equation	198
	6.3	Computational Studies	212
	6.4	Tangent Plane Stability Criterion	225
	6.5	Application to the NRTL Equation	229
	6.6	Illustrative Example for the NRTL : n-Butyl-Acetate – Water	234
7.	THE	GOP APPROACH : DISTRIBUTED IMPLEMENTATION	243
	7.1	Critical Components of the Distributed GOP Approach	243
	7.2	Large Scale Indefinite Quadratic Problems	247
	7.3	Large Scale Pooling and Blending Problems	251
Pa	rt II	Signomial Problems	
8.	GEN	ERALIZED GEOMETRIC PROGRAMMING : THEORY	257
	8.1	Introduction	257
	8.2	Theoretical Analysis	261
	8.3	Global Optimization Algorithm	276
	8.4	Proof of Convergence to the Global Minimum	282
	8.5	Illustrative Example	283
9.	GEN	ERALIZED GEOMETRIC PROGRAMMING : COMPUTATIONAL STUDIES	289
	9.1	Chemical Engineering Design Examples	289
	9.2	Robust Stability Analysis	297

Part III	Towards General Twice Differentiable NLPs	
10. FRO	M BICONVEX TO GENERAL TWICE DIFFERENTIABLE NLPS	309
10.1	Theoretical Results : GOP to α BB	309
10.2	Estimation of the Parameter $lpha$	311
11. THE α BB FOR BOX CONSTRAINED TWICE-DIFFERENTIABLE NLPS : THE		
11.1	Formulation and D.C. Transformation	315
11.2	Convex Lower Bounding Function	318
11.3	Global Optimization Algorithm $lpha {\sf BB}$	323
11.4	Steps of the Global Optimization Algorithm $lpha BB$	324
11.5	Proof of Convergence to the Global Minimum	326
11.6	Complexity Analysis	329
12. TH E	lphaBB FOR CONSTRAINED TWICE -DIFFERENTIABLE NLPS : THEORY	333
12.1	Formulation and Principles of the $lpha$ BB Global Optimization Algorithm	334
12.2	Underestimation Strategies	334
12.3	Overall Valid Convex Underestimator	340
12.4	Rigorous calculation of $lpha$ for general NLPs	342
12.5	Illustrative Example	355
12.6	Global Optimization Algorithm, $lpha BB$	361
12.7	Geometrical Interpretation of the $lpha BB$ Approach	365
13. CON	IPUTATIONAL STUDIES OF THE $lpha$ BB APPROACH	377
13.1	Algorithmic Issues and Development of the $lpha {\sf BB}$	377
13.2	Implementation of the $lpha {\sf B}{\sf B}$	382
13.3	Computational Studies of the $lpha {\sf BB}$ Approach	384
14. GLC	BAL OPTIMIZATION IN MICROCLUSTERS	403
14.1	Introduction	403
14.2	Problem Definition	407
14.3	Novel D.C. Transformation via Eigenvalue Analysis	409
14.4	Mathematical Model	418
14.5	Algorithmic Procedure	423
14.6	Small Cluster Examples	425
14.7	A Relaxation of the Global Optimization Approach	426
14.8	Discussion on Magic Numbers and Interatomic Spacing	431
14.9	Summary	432
15. TH	E $lpha$ BB APPROACH IN MOLECULAR STRUCTURE PREDICTION	435
15.1	Introduction and Background	435
15.2	Problem Definition	438
15.3	Problem Reformulation in Internal Coordinates	439
15.4	Convex Lower Bounding Function L of V	444
15.5	6 Computational Study : Propanal	447

x	DETERMINISTIC GLOBAL OPTIMIZATION	
16.	THE α BB APPROACH IN PROTEIN FOLDING 16.1 Introduction	451 451
	16.2 Mathematical Modeling	452
	16.3 Global Optimization	459
	16.4 Computational Studies : Unsolvated Oligopeptides	466
	16.5 Computational Studies : Solvated Oligopeptides	471
17.	THE $lpha$ BB APPROACH IN PEPTIDE DOCKING	481
	17.1 Introduction	481
	17.2 Peptide Docking Methods	483
	17.3 Problem Definition	485
	17.4 Outline of Approach	488
	17.5 Mathematical Modeling and Problem Formulation	490
	17.6 Global Optimization Approach and Its Interface	493
	17.7 Computational Studies and Discussion	498
18.	THE $lpha$ BB APPROACH IN BATCH DESIGN UNDER UNCERTAINTY	507
	18.1 Introduction	507
	18.2 Multiproduct Design Problem	509
	18.3 Lower Bounding Problem Formulations	517
	18.4 Global Optimization Algorithm - Modified $lpha BB$	524
	18.5 Illustrative Example	528
	18.6 Mixed-Product Campaign Formulation	530
	18.7 Computational Studies	533
	18.8 Comparison to Alternative Underestimating Approaches	538
19.	THE $lpha$ BB APPROACH IN PARAMETER ESTIMATION	543
	19.1 Introduction	543
	19.2 Maximum Likelihood Estimation	545
	19.3 Global Optimization Framework	548
	19.4 Global Optimization Algorithm	551
	19.5 Computational Studies	554
Pa	rt IV Nonlinear and Mixed-Integer Optimization	
20.	INTRODUCTION TO NONLINEAR AND MIXED-INTEGER OPTIMIZATION	571
	20.1 Motivation	571
	20.2 Mathematical Description	575
	20.3 Overview of Local Optimization Approaches for Convex MINLP Models	576
	20.4 Overview of Global Optimization Approaches for Nonconvex MINLP Models	579
21.	THE SMIN- $lpha$ BB APPROACH : THEORY AND COMPUTATIONS	587
	21.1 Mathematical Formulation	587
	21.2 Generation of Valid Lower Bounds	588

			Contents	xi
	21.3	Generation of Upper Bounds		590
	21.4	Selection of Branching Variables		591
	21.5	Updates of Variable Bounds		592
	21.6	The SMIN- $lpha$ BB Algorithm		595
	21.7	Computational studies		598
22.	THE	GMIN- α BB APPROACH : THEORY AND COMPUTATIONS		617
	22.1	Mathematical Formulation		618
	22.2	Generation of Lower Bounds		618
	22.3	Generation of Upper Bounds		621
	22.4	Selection of Branching Variables		622
	22.5	Updates of Variable Bounds		622
	22.6	The GMIN- $lpha$ BB Algorithm		624
	22.7	Computational studies		624

Part V Nonlinear Constrained Systems of Equations

23. ALL SOLUTIONS OF NONLINEAR CONSTRAINED SYSTEMS OF EQUATION	DNS 641	
23.1 Introduction	641	
23.2 Problem Definition	643	
23.3 Convex Lower Bounding	646	
23.4 procedure for enclosing all solutions	653	
23.5 Computational Studies	657	
24. LOCATING ALL HOMOGENEOUS AZEOTROPES	667	
24.1 Introduction	667	
24.2 Problem Description	668	
24.3 Mathematical Formulation	670	
24.4 Activity Coefficient Models	672	
24.5 Computational Studies	692	
References		